A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Schoessow, P.

Paper Title Page
TUPP045 Studies of Beam Breakup in Dielectric Structures 1643
 
  • A. Kanareykin, C.-J. Jing, A. L. Kustov, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio
  • W. Gai, J. G. Power
    ANL, Argonne, Illinois
 
  Beam breakup (BBU) effects resulting from parasitic wakefields provide a potentially serious limitation to the performance of dielectric structure based wakefield accelerators. We report on experimental and numerical investigation of BBU and its mitigation. The experimental program focuses on BBU measurements in a number of high gradient and high transformer ratio wakefield devices. New pickup-based beam diagnostics will provide methods for studying parasitic wakefields that are currently unavailable at the AWA facility. The numerical part of this research is based on a particle-Green’s function beam breakup code we are developing that allows rapid, efficient simulation of beam breakup effects in advanced linear accelerators. The goal of this work is to be able to compare the results of detailed experimental measurements with the accurate numerical results and to design an external FODO channel for the control of the beam in the presence of strong transverse wakefields.  
WEPP140 X-band PASER Experiment 2824
 
  • A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio
  • S. P. Antipov
    ANL, Argonne, Illinois
  • L. Schächter
    Technion, Haifa
 
  The PASER concept for particle acceleration entails the direct transfer of energy from an active medium to a charged particle beam. The PASER was originally formulated for optical (laser) media; we are pursuing a PASER demonstration experiment based on an optically pumped paramagnetic medium active in the X-band. We report on the development of a relatively high energy density microwave active medium consisting of a fullerene (C60) derivative in a toluene solution. We discuss both the bench test of an amplifier and a beam acceleration experiment under construction that employ this medium as a power source. Applications of the technology to accelerators and microwave components will be presented.