A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Schiavi, A.

Paper Title Page
TUPP100 A Four-dimensional Vlasov Solver for Microbunching Instability in the Injection System for X-ray FELs 1764
 
  • M. Migliorati, A. Schiavi
    Rome University La Sapienza, Roma
  • G. Dattoli
    ENEA C. R. Frascati, Frascati (Roma)
  • M. Venturini
    LBNL, Berkeley, California
 
  The phenomenon of microbunching instabilty arises from small charge-density fluctuations in the electron bunches that are amplified by the combined effect of space charge and coherent synchrotron radiation as the beam travels through magnetic compressors. In order to study the coupled longitudinal and transverse beam dynamics we propose to develop a four-dimensional grid-based Vlasov solver. The goal is to give an accurate characterization of the microbunching instability seeded by the random noise present in the initial bunch distribution. Solving directly the Vlasov equation instead of using macroparticle simulations has the advantage of avoiding the statistical fluctuations due to a limited number of macroparticles. Because a Vlasov solver in a high dimension phase-space tends to be particularly time consuming, to be practical a code implementing this method should run on parallel processors. In this paper we report progress toward the realization of such a 4D Vlasov solver.