A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sawamura, M.

Paper Title Page
MOPC061 Progress in R&D Efforts on the Energy Recovery Linac in Japan 205
 
  • S. Sakanaka, T. A. Agoh, A. Enomoto, S. Fukuda, K. Furukawa, T. Furuya, K. Haga, K. Harada, S. Hiramatsu, T. Honda, Y. Honda, K. Hosoyama, M. Izawa, E. Kako, T. Kasuga, H. Kawata, M. Kikuchi, H. Kobayakawa, Y. Kobayashi, T. Matsumoto, S. Michizono, T. Mitsuhashi, T. Miura, T. Miyajima, T. Muto, S. Nagahashi, T. Naito, T. Nogami, S. Noguchi, T. Obina, S. Ohsawa, T. Ozaki, H. Sasaki, S. Sasaki, K. Satoh, M. Satoh, M. Shimada, T. Shioya, T. Shishido, T. Suwada, T. Takahashi, Y. Tanimoto, M. Tawada, M. Tobiyama, K. Tsuchiya, T. Uchiyama, K. Umemori, S. Yamamoto
    KEK, Ibaraki
  • R. Hajima, H. Iijima, N. Kikuzawa, E. J. Minehara, R. Nagai, N. Nishimori, M. Sawamura
    JAEA/ERL, Ibaraki
  • H. Hanaki
    JASRI/SPring-8, Hyogo-ken
  • A. Ishii, I. Ito, T. Kawasaki, H. Kudo, N. Nakamura, H. Sakai, S. Shibuya, K. Shinoe, T. Shiraga, H. Takaki
    ISSP/SRL, Chiba
  • M. Katoh
    UVSOR, Okazaki
  • Y. Kobayashi, K. Torizuka, D. Yoshitomi
    AIST, Tsukuba
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
 
  The future synchrotron light sources, based on the energy recovery linacs (ERL), are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. The ERL-based light sources are under development at such institutes as the Cornell University, the Daresbury Laboratory, the Advanced Photon Source, and KEK/JAEA. The Japanese collaboration team, including KEK, JAEA, ISSP, and UVSOR, is working to realize the key technologies for the ERLs. Our R&D program includes the developments of ultra-low-emittance photocathode DC guns and of superconducting cavities, as well as proofs of accelerator-physics issues at a small test ERL (the Compact ERL). A 250-kV, 50-mA photo-cathode DC gun is under construction at JAEA. Two single-cell niobium cavities have been tested under high electric fields at KEK. The conceptual design of the Compact ERL has been carried out. We report recent progress in our R&D efforts.  
MOPP153 Cavity Diagnostics Using Rotating Mapping System for L-band ERL Superconducting Cavity 907
 
  • H. Sakai, K. Shinoe
    ISSP/SRL, Chiba
  • T. Furuya, T. Takahashi, K. Umemori
    KEK, Ibaraki
  • M. Sawamura
    JAEA/ERL, Ibaraki
 
  We are developing the L-band superconducting cavity for Energy Recovery Linac in Japan. In order to survey the electron emission and the heating spot of the cavity inner surface in detail, cavity diagnostics with the rotating mapping system was applied for the vertical tests of our cavities. Two types of sensor, one of which is the carbon resistor and the other is the Si PIN photo diode, was equipped to detect the temperature rise and electron emission. These two sensor arrays were arranged along the cavity axis and set on the rotating mechanics with servo motor. By rotating the sensor arrays around the cavity axis, a lot of information is obtained all over the cavity surface in detail. It is preferable that the number of sensors will be reduced compared with the usual cavity mapping system by using this rotating mapping system. We have already fabricated the Nb single cell cavities which is optimised for ERL operation and then performed the vertical test of Nb ERL single cell cavities. This paper reports the results of the mapping system with Nb single cell ERL-shape cavities.  
MOPP159 Results of Vertical Tests for the KEK-ERL Single Cell Superconducting Cavities 925
 
  • K. Umemori, T. Furuya, T. Takahashi
    KEK, Ibaraki
  • H. Sakai, K. Shinoe
    ISSP/SRL, Chiba
  • M. Sawamura
    JAEA/ERL, Ibaraki
 
  The development of the superconducting cavities is indispensable for realizing the 5 GeV-class energy recovery linacs. The KEK-ERL cavity had been recently designed. Its features are the optimized cell shapes and adoption of the enlarged beampipes with eccentric-fluted structures. In order to confirm our cavity design, two types of single cell cavities had been fabricated. One is a center-cell type cavity, whose aim is a validation of the cell shape, and another is an end-cell type cavity, which has complex structure such as the eccentric-fluted beampipes. After applying a series of surface treatments, we had assembled the cavities and performed vertical tests at KEK D10 area. Promising results have been obtained. In this presentation, we will present the results of vertical tests for these cavities.