A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Rosenzweig, J. B.

Paper Title Page
MOPC037 Single Spike Operation in SPARC SASE-FEL 154
 
  • V. Petrillo, I. Boscolo
    Universita' degli Studi di Milano, Milano
  • A. Bacci, S. Cialdi, L. Serafini
    INFN-Milano, Milano
  • R. Bonifacio, M. Boscolo, M. Ferrario, C. Vaccarezza
    INFN/LNF, Frascati (Roma)
  • F. Castelli
    Università degli Studi di Milano, Milano
  • L. Giannessi, C. Ronsivalle
    ENEA C. R. Frascati, Frascati (Roma)
  • L. Palumbo
    Rome University La Sapienza, Roma
  • S. Reiche, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • M. Serluca
    INFN-Roma, Roma
 
  We describe in this paper a possible experiment with the existing SPARC photoinjector to test the generation of sub-picosecond high brightness electron bunches able to produce single spike radiation pulses at 500 nm in the SPARC self-amplified spontaneous emission free-electron laser (SASE-FEL). The main purpose of the experiment will be the production of short electron bunches as long as few SASE cooperation lengths and to validate scaling laws to foresee operation at shorter wavelength in the future operation with SPARX. The basic physics, the experimental parameters and 3-D simulations are discussed. Complete start-to-end simulations with realistic SPARC parameters are presented, in view of an experiment for tests on superradiant theory with the existing hardware.  
MOPC080 Status of the FERMI@Elettra Photoinjector 247
 
  • M. Trovo, L. Badano, S. Biedron, D. Castronovo, F. Cianciosi, P. Craievich, G. D'Auria, M. B. Danailov, M. Ferianis, S. V. Milton, G. Penco, L. Pivetta, L. Rumiz, D. Wang
    ELETTRA, Basovizza, Trieste
  • H. Badakov, A. Fukasawa, B. D. O'Shea, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • M. Eriksson, D. Kumbaro, F. Lindau
    MAX-lab, Lund
 
  The new FERMI@Elettra photoinjector is presently undergoing high-power testing and characterization at MAX-Lab in Lund Sweden. This effort is a collaboration between Sincrotrone Trieste, MAX-Lab and UCLA. The 1.6-cell RF gun cavity and the focusing solenoid were successfully designed and built by the Particle Beam Physics Laboratory at UCLA, delivered to Sincrotrone Trieste at the beginning of 2008, and installed in the linac tunnel at MAX-Lab. Use of the MAX-Lab facility will allow the FERMI project to progress significantly with the photoinjector while waiting for the completion of the new linac building extension at Sincrotrone Trieste. We report here on the high-power conditioning of the RF cavity and the first beam tests. Furthermore, a preliminary characterization of the 5 MeV beam will also be presented.  
MOPP075 Experimental Generation and Characterization of Uniformly Filled Ellipsoidal Electron Beam Distributions 724
 
  • P. Musumeci, J. Moody, J. B. Rosenzweig, C. M. Scoby
    UCLA, Los Angeles, California
 
  For forty years, uniformly filled ellipsoidal beam distributions have been studied theoretically, as they have had the promise of generating self-fields that produce forces linear in the coordinate offset in all three directions. More recently, a scheme for producing such distributions, which depends on the strong longitudinal expansion of an initially very short beam under its own space charge forces, has been proposed. Here we present the experimental demonstration of this scheme, obtained by illuminating the cathode in an rf photogun with an ultra-short laser pulse (~35 fs rms) with an appropriate transverse profile. The resulting 4 MeV beam spatiotemporal (x,t) distribution is imaged using an rf deflecting cavity with 50 fsec resolution. A temporal asymmetry in the ellipsoidal profile, due to image charge effects at the photocathode, is observed at higher charge operation. This distortion is also found to degrade the transverse beam quality.  
MOPP086 A Novel Fabrication Technique for the Production of RF Photoinjectors 751
 
  • P. Frigola, R. B. Agustsson, S. Boucher, A. Y. Murokh
    RadiaBeam, Marina del Rey
  • D. Cormier, T. Mahale
    NCSU, Raleigh
  • L. Faillace
    Rome University La Sapienza, Roma
  • J. B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
 
  Recent developments in Direct Metal Free Form Fabrication (DMFFF) technology may make it possible to design and produce near netshape copper structures for the next generation of very high duty factor, high gradient radio frequency (RF) photoinjectors. RF and thermal-management optimized geometries could be fully realized without the usual constraints and compromises of conventional machining techniques. A photoinjector design incorporating DMFFF and results from an initial material feasibility study will be reported.  
TUPC072 Design and Fabrication of an X-band Traveling Wave Deflection Mode Cavity for Longitudinal Characterization of Ultra-short Electron Beam Pulses 1215
 
  • A. Y. Murokh, R. B. Agustsson, S. Boucher, P. Frigola
    RadiaBeam, Marina del Rey
  • D. Alesini
    INFN/LNF, Frascati (Roma)
  • R. J. England, J. B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
  • V. Yakimenko
    BNL, Upton, Long Island, New York
 
  An X-band Traveling wave Deflector mode cavity (XTD) has been developed at Radiabeam Technologies to perform longitudinal characterization of the sub-picosecond ultra-relativistic electron beams. The device is optimized for the 100 MeV electron beam parameters at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory, and is scalable to higher energies. An XTD is designed to operate at 11.424 GHz, and features short filling time, femtosecond resolution, and a small footprint. RF design, fabrication procedure, and commissioning plans are presented. An experimental program at ATF to utilize the deflector for compressed beam characterization is discussed, including proposed measurements of the phase space filamentation due to non-linear processes in a chicane compressor.  
TUPP150 The Radiatron: A High Average Current Betatron for Industrial and Security Applications 1860
 
  • S. Boucher, R. B. Agustsson, P. Frigola, A. Y. Murokh, M. Ruelas
    RadiaBeam, Los Angeles
  • F. H. O'Shea, J. B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
 
  The fixed-field alternating-gradient (FFAG) betatron has emerged as a viable alternative to RF linacs as a source of high-energy radiation for industrial and security applications. For industrial applications, high average currents at modest relativistic electron beam energies, typically in the 5 to 10 MeV range, are desired for medical product sterilization, food irradiation and materials processing. For security applications, high power x-rays in the 3 to 20 MeV range are needed for rapid screening of cargo containers and vehicles. In a FFAG betatron, high-power output is possible due to high duty factor and fast acceleration cycle: electrons are injected and accelerated in a quasi-CW mode while being confined and focused in the fixed-field alternating-gradient lattice. The beam is accelerated via magnetic induction from a betatron core made with modern low-loss magnetic materials. Here we present the design and status of a prototype FFAG betatron, called the RadiaTron, as well as future prospects for these machines.  
WEPP142 Simulation of and Progress towards a Micron-scale Laser-powered Dielectric Electron Source 2827
 
  • G. Travish, J. B. Rosenzweig, J. Xu
    UCLA, Los Angeles, California
  • S. Boucher
    RadiaBeam, Marina del Rey
  • R. B. Yoder
    Manhattan College, Riverdale, New York
 
  A dielectric, slab-symmetric structure for generating and accelerating low-energy electrons has been under study for the past two years. The resonant device is driven by a side-coupled laser and is configured to maintain field provide necessary for synchronous acceleration and focusing of nonrelativistic particles. Intended applications of the structure include the production of radiation for medical treatments, imaging, and industrial uses. The details of the structure geometry and its resonant properties have been studied with 2D and 3D electromagnetic codes, the results of which are present here.  
WEPC075 Recent Results and Future Perspectives of the SPARC Project 2169
 
  • M. Ferrario, D. Alesini, M. Bellaveglia, R. Boni, M. Boscolo, M. Castellano, E. Chiadroni, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, B. Marchetti, A. Marinelli, C. Marrelli, E. Pace, L. Palumbo, L. Pellegrino, R. Ricci, U. Rotundo, C. Sanelli, F. Sgamma, B. Spataro, F. Tazzioli, S. Tomassini, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Bacci, I. Boscolo, F. Broggi, F. Castelli, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, V. Petrillo, A. R. Rossi, L. Serafini
    INFN-Milano, Milano
  • M. Bougeard, B. Carré, D. Garzella, M. Labat, G. Lambert, H. Merdji, P. Salieres, O. Tchebakoff
    CEA, Gif-sur-Yvette
  • L. Catani
    INFN-Roma II, Roma
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma
  • F. Ciocci, G. Dattoli, A. Dipace, A. Doria, G. P. Gallerano, L. Giannessi, E. Giovenale, G. L. Orlandi, S. Pagnutti, A. Petralia, M. Quattromini, C. Ronsivalle, E. Sabia, I. P. Spassovsky, V. Surrenti
    ENEA C. R. Frascati, Frascati (Roma)
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette
  • M. Mattioli, M. Serluca
    INFN-Roma, Roma
  • M. Migliorati, A. Mostacci
    Rome University La Sapienza, Roma
  • M. Petrarca
    Università di Roma I La Sapienza, Roma
  • J. B. Rosenzweig
    UCLA, Los Angeles, California
 
  The SPARC project foresees the realization of a high brightness photo-injector to produce a 150-200 MeV electron beam to drive 500 nm FEL experiments in various configurations, a Thomson backscattering source and a plasma accelerator experiment. The SPARC photoinjector is also the test facility for the recently approved VUV FEL project named SPARX. As a first stage of the commissioning a complete characterization of the photoinjector has been accomplished with a detailed study of the emittance compensation process downstream the gun-solenoid system and the demonstration of the emittance oscillation in the drift. The second stage of the commissioning, that is currently underway, foresees a detailed analysis of the beam matching with the linac in order to confirm the theoretically prediction of emittance compensation based on the “invariant envelope” matching and the demonstration of the “velocity bunching” technique in the linac. In this paper we report the experimental results obtained so far and the scientific program for the near future.