A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Renier, Y.

Paper Title Page
TUPC122 Feedback Corrections for Ground Motion Effects at ATF2 1353
 
  • Y. Renier, P. Bambade
    LAL, Orsay
 
  Ground motion will over time produce beam misalignments and size increases at the IP of the ATF2 beam line. The spatial and temporal characteristics of the vibrations measured on the site have been studied and model parameters have been fitted to allow reliably simulating the effects induced on the beam. A feedback loop to minimise the residual beam motion at the IP is considered, based on optimising the coefficients of a PID controller on both short and long time-scales.  
TUPP016 A Flight Simulator for ATF2 - A Mechanism for International Collaboration in the Writing and Deployment of Online Beam Dynamics Algorithms 1562
 
  • G. R. White, S. Molloy, A. Seryi
    SLAC, Menlo Park, California
  • P. Bambade, Y. Renier
    LAL, Orsay
  • S. Kuroda
    KEK, Ibaraki
  • D. Schulte, R. Tomas
    CERN, Geneva
 
  The goals of ATF2 are to test a novel compact final focus optics design with local chromaticity correction intended for use in future linear colliders. The newly designed extraction line and final focus system will be used to produce a 37nm vertical waist from an extracted beam from the ATF ring of ~30nm vertical normalised emittance, and to stabilise it at the IP-waist to the ~2nm level. Static and dynamic tolerances on all accelerator components are very tight; the achievement of the ATF2 goals is reliant on the application of multiple high-level beam dynamics algorithms to align and tune the electron beam in the extraction line and final focus system. Much algorithmic development work has been done in Japan and by colleagues in collaborating nations in North America and Europe. We describe here development work towards realising a 'flight simulator' environment for the shared development and implementation of beam dynamics code. This software exists as a 'middle-layer' between the lower-level control systems (EPICS and V-SYSTEM) and the multiple higher-level beam dynamics modeling tools in use by the three regions (SAD, Lucretia and PLACET).  
TUPP094 Recent Improvements in the Tracking Code PLACET 1750
 
  • A. Latina, H. Burkhardt, G. Rumolo, D. Schulte, R. Tomas
    CERN, Geneva
  • E. Adli
    University of Oslo, Oslo
  • Y. Renier
    LAL, Orsay
 
  The Tracking Code PLACET has recently undergone several improvements. A redesign of its internal data structures and a new user interface based on the mathematical toolbox Octave have considerably expanded its simulation capabilities. Several new lattice elements, optimization algorithms and physics processes have been added to allow for more complete start-to-end simulations. The usage of the AML language and the Universal Parser Library extened its interfacing capability.