A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Reiche, S.

Paper Title Page
MOPC037 Single Spike Operation in SPARC SASE-FEL 154
 
  • V. Petrillo, I. Boscolo
    Universita' degli Studi di Milano, Milano
  • A. Bacci, S. Cialdi, L. Serafini
    INFN-Milano, Milano
  • R. Bonifacio, M. Boscolo, M. Ferrario, C. Vaccarezza
    INFN/LNF, Frascati (Roma)
  • F. Castelli
    Università degli Studi di Milano, Milano
  • L. Giannessi, C. Ronsivalle
    ENEA C. R. Frascati, Frascati (Roma)
  • L. Palumbo
    Rome University La Sapienza, Roma
  • S. Reiche, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • M. Serluca
    INFN-Roma, Roma
 
  We describe in this paper a possible experiment with the existing SPARC photoinjector to test the generation of sub-picosecond high brightness electron bunches able to produce single spike radiation pulses at 500 nm in the SPARC self-amplified spontaneous emission free-electron laser (SASE-FEL). The main purpose of the experiment will be the production of short electron bunches as long as few SASE cooperation lengths and to validate scaling laws to foresee operation at shorter wavelength in the future operation with SPARX. The basic physics, the experimental parameters and 3-D simulations are discussed. Complete start-to-end simulations with realistic SPARC parameters are presented, in view of an experiment for tests on superradiant theory with the existing hardware.  
WEPC128 SPUR: A New Code for the Calculation of Synchrotron Radiation from Very Long Undulator Systems 2305
 
  • N. C. Ryder, D. J. Scott
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • S. Reiche
    UCLA, Los Angeles, California
 
  The accurate calculation of synchrotron radiation from an undulator is a common problem and numerous codes have been developed that describe analytic and measured fields. However, for very long undulator systems, comprising of many individual modules and total lengths in excess of 100s of meters, for example as found in the LCLS, X-FEL, the ILC positron source undulator systems, there is not a suitable code that can handle the amount of data in a convenient manner and which runs in a practically realisable time limit. The development of a new code, SPontaneous Undulator Radiation, SPUR, is presented which computes the spontaneous radiation from electron beams passing through a system of undulators. The code supports parallel architecture, and uses the HDF5 technology to efficiently handle the multi-dimensional data. The latest results developments and benchmarking are presented.