A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Rees, G. H.

Paper Title Page
WEPP116 Muon Decay Ring Study 2770
 
  • D. J. Kelliher, S. Machida, C. R. Prior, G. H. Rees
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • F. Meot
    CEA, Gif-sur-Yvette
 
  Three different muon decay ring configurations are being considered for a neutrino factory. A racetrack design is the current ISS baseline (as it allows greater flexibility in the choice of detector sites) but triangular and bow-tie rings have advantages in neutrino production rates*. Using tracking code simulations, a study of the latter two designs is carried out. Since spin depolarisation measurements have been proposed for muon energy calibration**, spin tracking is included in this study. Dynamic aperture is important and is also calculated.

*International Scoping Study report, 2006.
**A Blondel et al. (editors), ECFA/CERN studies of a European Neutrino Factory Complex, CERN-2004-002 and EFCA/04/230, 13 April, 2004.

 
THPP083 Megawatt Upgrades for the ISIS Facility 3554
 
  • J. W.G. Thomason, D. J. Adams, D. J.S. Findlay, I. S.K. Gardner, B. Jones, A. P. Letchford, S. J. Payne, B. G. Pine, A. Seville, C. M. Warsop, R. E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • D. C. Plostinar, C. R. Prior, G. H. Rees
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
  ISIS is the spallation neutron source at the Rutherford Appleton Laboratory in the UK. Presently, it runs at beam powers of 0.2 MW, with upgrades in place to supply increased powers for the new Second Target Station due to start operation in autumn 2008. This paper outlines schemes for major upgrades to the facility in the megawatt regime, with options for 1, 2 and 5 MW. The ideas centre around new 3.2 GeV RCS designs that can be employed to increase the energy of the existing ISIS beam to provide powers of ~1 MW or, possibly as a second upgrade stage, accumulate and accelerate beam from a new 0.8 GeV linac for 2-5 MW beams. Summaries of ring designs are presented, along with studies and simulations to assess the key loss mechanisms that will impose intensity limitations. Important factors include injection, RF systems, instabilities, longitudinal and transverse space charge.