A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Pont, M.

Paper Title Page
MOPP109 Status of the 100 MeV Preinjector for the ALBA Synchrotron 811
 
  • A. Falone, D. Einfeld, M. Pont
    ALBA, Bellaterra
  • D. Jousse, J.-L. Pastre, F. Rodriguez, A. S. Setty
    THALES, Colombes
  • A. Sacharidis
    EuroMev, Buc
 
  A turn key 100 MeV linac has been constructed by THALES in order to inject electrons into the booster synchrotron of ALBA*. The linac will be commissioned in May 2008. This paper will remind the main features of the linac** and will give results obtained during the commissioning tests. The energy and emittance measurements will be done on the transfer line conceived and realized by CELLS.

* D. Einfeld "Status of ALBA", PAC07, Albuquerque, USA, June 2007.
** A. Setty "Beam dynamics of the 100 MeV preinjector for the spanish synchrotron ALBA", PAC07, Albuquerque, USA, June 2007.

 
WEPC067 Optics for the ALBA Booster Synchrotron 2148
 
  • G. Benedetti, D. Einfeld, Z. Martí, M. Munoz, M. Pont
    ALBA, Bellaterra
 
  The ALBA booster is a full energy injector of 3 GeV for top-up operation that will be installed in the same tunnel as the Storage Ring. Its large circumference of 249.6 m and the magnetic lattice with combined function bending magnets provide an equilibrium emittance as low as 9 nm rad. In this paper the linear optics functions, the aperture requirements and the gradient error tolerances in the dipoles and quadrupoles are discussed. The closed orbit correction scheme consists of 44 horizontal and 28 vertical correctors and 44 BPMs. A solution that requires a reduced number of BPMs has been studied as well. Chromaticity correction and dynamic aperture during the ramping have been also investigated. Finally, the injection and extraction schemes are described.  
WEPC068 Injection into the ALBA Storage Ring 2151
 
  • G. Benedetti, D. Einfeld, M. Munoz, M. Pont
    ALBA, Bellaterra
  • E. Huttel
    FZK, Karlsruhe
 
  Injection into the ALBA Storage Ring is performed at an energy of 3 GeV in a 7 m long straight section. The injection bump is performed with four kickers. Pulsed magnets are described, in particular the active septum magnet. Tracking of particles has been simulated over a large number of turns, taking into account the magnet errors, the sextupole fields and the physical apertures all along the machine. Specific requirements for top-up injection have been examined, such as a perfect closure of the injection bump, the residual vertical field and the leakage fields from the septum.