A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Peters, A.

Paper Title Page
TUPP113 Intensity Upgrade Programme for the HIT Injector Linac 1788
 
  • R. Cee, T. Haberer, A. Peters, S. Scheloske, T. Winkelmann
    HIT, Heidelberg
 
  The Heidelberg Ion Beam Therapy Centre (HIT) is a worldwide unique radiation therapy facility and the first installation of its kind in Europe. It is equipped with three treatment rooms and has the potential to irradiate over 1000 patients per year. To guarantee such a high patient throughput, i.e. based on short irradiation times, and in order to prepare upcoming clinical requirements the currently limited beam intensity (particles per spill) needs to be increased. In an endeavour to provide optimum conditions for the patient treatment an intensity upgrade programme for the injector linac has been initiated. It affects primarily the ion source and the RFQ but also other linac components. The largest influence on the linac transmission is expected by a new RFQ design with optimised electrodes, which is currently commissioned on a test bench. The update programme is accompanied by beam dynamics simulations and machine studies. First improvements are presented and the status of the programme is given.  
TUPP127 Spill Structure Measurements at the Heidelberg Ion Therapy Centre 1824
 
  • A. Peters, R. Cee, T. Haberer, T. Winkelmann
    HIT, Heidelberg
  • T. Hoffmann, A. Reiter, M. Schwickert
    GSI, Darmstadt
 
  A specially designed accelerator facility for tumour irradiation located at the Heidelberg University Hospital was built up, the commissioning is still ongoing. Technically the Heidelberg Ion Therapy Center (HIT) fully relies on the three dimensional intensity-controlled rasterscan technique developed at GSI. This method demands for smoothly extracted ion beams (from protons to oxygen) from the HIT synchrotron. For this purpose a RF knock-out system consisting of a RF-exciter in combination with an electrostatic septum, two septum magnets and two sextupoles is used. To characterize the extracted beams scintillators for low intensities and ionization chambers for higher currents are installed in the high energy transport lines. Using a PXI-based DAQ system full spills are recorded with a time bin of 100 μs. Typical raw data will be shown as well as derived statistics like Fourier spectra and maximum-to-average ratios that proof the beam quality for its applicability to produce outstanding dose distributions via beam scanning. In addition, safety aspects like the performance of the spill interrupt procedure will be demonstrated with measured data.