A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Penco, G.

Paper Title Page
MOPC080 Status of the FERMI@Elettra Photoinjector 247
 
  • M. Trovo, L. Badano, S. Biedron, D. Castronovo, F. Cianciosi, P. Craievich, G. D'Auria, M. B. Danailov, M. Ferianis, S. V. Milton, G. Penco, L. Pivetta, L. Rumiz, D. Wang
    ELETTRA, Basovizza, Trieste
  • H. Badakov, A. Fukasawa, B. D. O'Shea, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • M. Eriksson, D. Kumbaro, F. Lindau
    MAX-lab, Lund
 
  The new FERMI@Elettra photoinjector is presently undergoing high-power testing and characterization at MAX-Lab in Lund Sweden. This effort is a collaboration between Sincrotrone Trieste, MAX-Lab and UCLA. The 1.6-cell RF gun cavity and the focusing solenoid were successfully designed and built by the Particle Beam Physics Laboratory at UCLA, delivered to Sincrotrone Trieste at the beginning of 2008, and installed in the linac tunnel at MAX-Lab. Use of the MAX-Lab facility will allow the FERMI project to progress significantly with the photoinjector while waiting for the completion of the new linac building extension at Sincrotrone Trieste. We report here on the high-power conditioning of the RF cavity and the first beam tests. Furthermore, a preliminary characterization of the 5 MeV beam will also be presented.  
TUPC004 The Diagnostic Line of Elettra Booster 100MeV Pre-injector 1044
 
  • S. Bassanese, L. Badano, M. Bossi, A. Carniel, G. Ciani, S. Di Mitri, M. Ferianis, G. Mian, G. Penco, M. Veronese
    ELETTRA, Basovizza, Trieste
 
  In order to fully characterize the beam of the new 100MeV linac pre-injector for the Elettra Booster, a standard diagnostic set-up has been designed which includes strip line BPMs, scintillating screens and current transformers. During the initial tuning of the pre-injector, a thermo-ionic gun followed by a 500MHz pre bunching cavity, an S-band bunching structure and two LIL accelerating sections, some extra diagnostics have been used to get a deeper understanding of the pre-injector operating point. In particular some prototypes of the FERMI@elettra diagnostics, installed on the same booster pre-injector, have been used to better characterize the beam transverse and longitudinal beam axis. An improved resolution screen system, equipped with a YAG screen, has been used as well as a wideband longitudinal pick-up. The measurement results as well as the tuning procedure are here presented.  
TUPC077 The 100-MeV Beam Diagnostic Station for the FERMI Linac 1230
 
  • G. Penco, S. Di Mitri, S. Spampinati
    ELETTRA, Basovizza, Trieste
 
  In order to transversally match the beam coming out from the injector to the FERMI@Elettra linac lattice, a beam diagnostic station will be placed at 100 MeV. It is equipped with quadrupoles and Optical Transition Radiation (OTR) screens to measure and correct the beam Twiss parameters and to evaluate the transverse emittances through a three-screen technique. Moreover, the second OTR screen is placed close to the laser heater undulator to guarantee that the eletron/photon interaction is achieved at the beam waist. Design optimization studies and simulation results are presented in this paper.  
TUPC078 The Gun Spectrometer Design for the FERMI@Elettra Project 1233
 
  • G. Penco, D. Castronovo, M. Trovo, D. Zangrando
    ELETTRA, Basovizza, Trieste
 
  In the FERMI linac layout the first spectrometer has been located close to the exit of the photoinjector gun at about 5 MeV. The main purpose of this equipment is measuring the energy and energy spread of the beam. Combining the spectrometer with Yag screens and Cerenkov radiators allows the investigation and characterization of eventual deterioration of the longitudinal profile due to the space charge forces and microbunching instabilities. The design specification of the magnet and multi-particle tracking code simulation results are presented in this paper.  
TUPC079 Beam Emittance Measurement for the New Full Energy Injector at ELETTRA 1236
 
  • G. Penco, L. Badano, S. Bassanese, G. Ciani, P. Craievich, S. Di Mitri, M. Ferianis, M. Predonzani, M. Veronese
    ELETTRA, Basovizza, Trieste
  • A. A. Lutman
    DEEI, Trieste
 
  An emittance measurement station was set up and operated with the quadrupole scan technique to characterize the electron beam transverse phase space at the Elettra laboratory. The diagnostic station, based on a YAG:Ce scintillation screen imaged by a CCD digital camera, was installed at the end of the 100 MeV booster pre-injector together with a beam longitudinal structure monitor. This equipment plays an important role for the bunching system optimization and for the optical matching of the injection transfer line to the booster ring. Experimental results and comparison with multi-particle tracking codes simulation are presented in this paper.  
WEPC027 Coherent THz Radiation at ELETTRA 2043
 
  • E. Karantzoulis, G. Penco, A. Perucchi
    ELETTRA, Basovizza, Trieste
  • S. Lupi
    Coherentia, Naples
 
  Coherent infra red radiation (CIR) has been observed since some time at ELETTRA under several machine parameter settings in the beam-line SISSI. Effort has been made to produce a “stable” THz signal for experimental use. The description of the machine settings to that end and the measurements performed are presented and discussed.