A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Panzeri, N.

Paper Title Page
MOPP114 Design of the Prototypical Cryomodule for the EUROTRANS Superconducting Linac for Nuclear Waste Transmutation 826
 
  • S. Barbanotti, N. Panzeri, P. Pierini
    INFN/LASA, Segrate (MI)
  • J.-L. Biarrotte, P. Blache, C. Commeaux, P. Duthil, E. Rampnoux
    IPN, Orsay
  • M. Souli
    GANIL, Caen
 
  One task of the accelerator workpackage of the EUROTRANS program for the design of a nuclear waste transmutation system is dedicated to the engineering and realization of a prototype cryomodule of the high energy section of the linac, equipped with elliptical superconducting niobium cavities. We review here the present status of the design and the planned program that foresees the experimental characterization of the fully equipped cavity and RF system under its nominal operating conditions.  
MOPP120 Full Characterization of the Piezo Blade Tuner for Superconducting RF Cavities 838
 
  • A. Bosotti, C. Pagani, N. Panzeri, R. Paparella
    INFN/LASA, Segrate (MI)
  • C. Albrecht, K. Jensch, R. Lange, L. Lilje
    DESY, Hamburg
  • J. Knobloch, O. Kugeler, A. Neumann
    BESSY GmbH, Berlin
 
  Cavity tuners are mechanical devices designed to precisely match the resonant frequency of the superconducting (SC) cavity to the RF frequency synchronous with the beam. The blade tuner is mounted coaxially to the cavity and changes the resonator frequency by varying its length. A high tuning range is desired together with small mechanical hysteresis, to allow easy and reproducible resonator setup operations. High stiffness is also demanded to the tuner system both to ensure mechanical stability and to mitigate the frequency instabilities induced by perturbations. In high gradient SC resonators, the main sources of resonant frequency instability are the Lorentz Force Detuning (LFD) under pulsed mode operation, and the microphonic noise, in continuous wave (CW) with high loaded quality factors. Piezoceramic elements add dynamic tuning capabilities to the system, allowing fast compensation of these instabilities with the help of feed-forward and feedback loops. The piezo blade tuner has been extensively tested both at room temperature and at cold once assembled on a TESLA type cavity in its final configuration. This paper presents the summary of the complete characterization tests.  
MOPP146 The Coaxial Tuner for ILCTA_NML at Fermilab 895
 
  • A. Bosotti, C. Pagani, N. Panzeri, R. Paparella
    INFN/LASA, Segrate (MI)
 
  The piezo Blade Tuner prototype has been successfully tested inside the horizontal cryostat, CHECHIA, at DESY and extensive tests at BESSY are planned. As suggested by the cold test results, a few minor modifications have been implemented and a set of 8 improved devices is under construction for the installation in the second module of ILCTA at Fermilab. This reviewed design, together with a simplified helium tank in prototyping, should hopefully fulfill also the XFEL requests in term of performances and cost. In particular the use of thicker blades and their slightly different distribution along the circumference produces the increase of the tuner strength and stiffness that is needed in order to fulfill the pressure vessel regulations for qualification. As in the past, two equivalent devices, respectively in titanium and stainless steel, have been designed to maintain open the possibility of the use of a SS helium vessel once the required technology were developed. The results of the extensive mechanical tests performed to validate the estimated performances and life time are also presented.  
MOPP148 Design of a Magnetic Shield Internal to the Helium Vessel of SRF Cavities 898
 
  • P. Pierini, S. Barbanotti, L. Monaco, N. Panzeri
    INFN/LASA, Segrate (MI)
 
  The TRASCO elliptical cavities for intermediate velocity protons (β=0.47) employ a coaxial cold tuner of the blade type. To meet the perfomance goals of the 700 MHz cavities in the foreseen horizontal cryostat tests, the cavities are being equipped with a magnetic shield which lies internally to the cavity helium vessel and has a simple mechanical design and assembly procedure.