A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Palumbo, L.

Paper Title Page
MOZAG01 Simulations of the Emittance Compensation in Photoinjectors and Comparison with SPARC Measurements 21
 
  • C. Ronsivalle, L. Giannessi, M. Quattromini
    ENEA C. R. Frascati, Frascati (Roma)
  • A. Bacci, A. R. Rossi, L. Serafini
    INFN-Milano, Milano
  • E. Chiadroni, M. Ferrario, L. Ficcadenti, D. Filippetto, V. Fusco, B. Marchetti, M. Migliorati, A. Mostacci, L. Palumbo, C. Vaccarezza
    INFN/LNF, Frascati (Roma)
  • A. Cianchi
    INFN-Roma II, Roma
 
  FEL photoinjectors are based on the emittance compensation process, by which a high brightness beam can be accelerated without degradation. The experimental results obtained in the SPARC facility for which the beam dynamics has been extensively simulated confirm the theoretical predictions. The paper illustrates the most relevant beam dynamics results as well as a comparison between simulations and measurements.  
slides icon Slides  
MOPC026 Status of SPARX Project 121
 
  • L. Palumbo
    Rome University La Sapienza, Roma
 
  The SPARX project consists in an X-ray-FEL facility jointly supported by MIUR (Research Department of Italian Government), Regione Lazio, CNR, ENEA, INFN and Rome University Tor Vergata. It is the natural extension of the ongoing activities of the SPARC collaboration. The aim is the generation of electron beams characterized by ultra-high peak brightness at the energy of 1.2 and 2.4 GeV, for the first and the second phase respectively. The beam is expected to drive a single pass FEL experiment in the range of 13.5-6 nm and 6-1.5 nm, at 1.2 GeV and 2.4 GeV respectively, both in SASE and Seeded FEL configurations.  
MOPC037 Single Spike Operation in SPARC SASE-FEL 154
 
  • V. Petrillo, I. Boscolo
    Universita' degli Studi di Milano, Milano
  • A. Bacci, S. Cialdi, L. Serafini
    INFN-Milano, Milano
  • R. Bonifacio, M. Boscolo, M. Ferrario, C. Vaccarezza
    INFN/LNF, Frascati (Roma)
  • F. Castelli
    Università degli Studi di Milano, Milano
  • L. Giannessi, C. Ronsivalle
    ENEA C. R. Frascati, Frascati (Roma)
  • L. Palumbo
    Rome University La Sapienza, Roma
  • S. Reiche, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • M. Serluca
    INFN-Roma, Roma
 
  We describe in this paper a possible experiment with the existing SPARC photoinjector to test the generation of sub-picosecond high brightness electron bunches able to produce single spike radiation pulses at 500 nm in the SPARC self-amplified spontaneous emission free-electron laser (SASE-FEL). The main purpose of the experiment will be the production of short electron bunches as long as few SASE cooperation lengths and to validate scaling laws to foresee operation at shorter wavelength in the future operation with SPARX. The basic physics, the experimental parameters and 3-D simulations are discussed. Complete start-to-end simulations with realistic SPARC parameters are presented, in view of an experiment for tests on superradiant theory with the existing hardware.  
TUPC080 Fermi Low-energy Transverse RF Deflector Cavity 1239
 
  • P. Craievich, S. Biedron, C. Bontoiu, S. Di Mitri, M. Ferianis, M. Veronese
    ELETTRA, Basovizza, Trieste
  • D. Alesini, L. Palumbo
    INFN/LNF, Frascati (Roma)
  • L. Ficcadenti
    Rome University La Sapienza, Roma
  • M. Petronio
    DEEI, Trieste
 
  The layout of FERMI@Elettra will include a transverse S-band RF deflector that will be located after the first bunch compressor (BC1) at 250 MeV. The deflector will operate in a vertical deflecting mode and coupled to a downstream dipole will be used to measure the electron bunch length and in particular to allow time-resolved beam quality measurements such as horizontal slice emittance and slice energy spread. In this paper we discuss the electron bunch deflection at 250 MeV taking into account the principal elements that dominate the selection of the transverse peak voltage specification: the finite transverse emittance, the resolution of OTR screens and the desired number of the slice divisions along the bunch that we wish to observe. The RF deflector proposed here is a frequency scaled version of the 5-cell standing wave SPARC structure.  
WEPC075 Recent Results and Future Perspectives of the SPARC Project 2169
 
  • M. Ferrario, D. Alesini, M. Bellaveglia, R. Boni, M. Boscolo, M. Castellano, E. Chiadroni, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, B. Marchetti, A. Marinelli, C. Marrelli, E. Pace, L. Palumbo, L. Pellegrino, R. Ricci, U. Rotundo, C. Sanelli, F. Sgamma, B. Spataro, F. Tazzioli, S. Tomassini, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Bacci, I. Boscolo, F. Broggi, F. Castelli, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, V. Petrillo, A. R. Rossi, L. Serafini
    INFN-Milano, Milano
  • M. Bougeard, B. Carré, D. Garzella, M. Labat, G. Lambert, H. Merdji, P. Salieres, O. Tchebakoff
    CEA, Gif-sur-Yvette
  • L. Catani
    INFN-Roma II, Roma
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma
  • F. Ciocci, G. Dattoli, A. Dipace, A. Doria, G. P. Gallerano, L. Giannessi, E. Giovenale, G. L. Orlandi, S. Pagnutti, A. Petralia, M. Quattromini, C. Ronsivalle, E. Sabia, I. P. Spassovsky, V. Surrenti
    ENEA C. R. Frascati, Frascati (Roma)
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette
  • M. Mattioli, M. Serluca
    INFN-Roma, Roma
  • M. Migliorati, A. Mostacci
    Rome University La Sapienza, Roma
  • M. Petrarca
    Università di Roma I La Sapienza, Roma
  • J. B. Rosenzweig
    UCLA, Los Angeles, California
 
  The SPARC project foresees the realization of a high brightness photo-injector to produce a 150-200 MeV electron beam to drive 500 nm FEL experiments in various configurations, a Thomson backscattering source and a plasma accelerator experiment. The SPARC photoinjector is also the test facility for the recently approved VUV FEL project named SPARX. As a first stage of the commissioning a complete characterization of the photoinjector has been accomplished with a detailed study of the emittance compensation process downstream the gun-solenoid system and the demonstration of the emittance oscillation in the drift. The second stage of the commissioning, that is currently underway, foresees a detailed analysis of the beam matching with the linac in order to confirm the theoretically prediction of emittance compensation based on the “invariant envelope” matching and the demonstration of the “velocity bunching” technique in the linac. In this paper we report the experimental results obtained so far and the scientific program for the near future.