A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Oki, T.

Paper Title Page
MOPC119 Low-Output-Impedance RF System for the ISIS Second Harmonic Cavity 343
 
  • Y. Irie, S. Fukumoto, K. Muto, A. Takagi
    KEK, Ibaraki
  • D. Bayley, I. S.K. Gardner, A. Seville, J. W.G. Thomason
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J. C. Dooling, D. Horan, R. Kustom, M. E. Middendorf
    ANL, Argonne, Illinois
  • T. Oki
    Tsukuba University, Ibaraki
 
  Low-output-impedance RF system for the second harmonic cavity in the ISIS synchrotron has been developed by the collaboration between Argonne National Laboratory, US, KEK, Japan and Rutherford Appleton Laboratory, UK. Low output impedance is realized by the feedback from plate output to grid input of the final triode amplifier, resulting in less than 30 Ω over the frequency range of interest. Precise control of the second harmonic voltage can then be realized without considering beam loading effects. Beam test scenario in the ISIS synchrotron is discussed.  
THPP071 Construction of Six-sector FFAG Ring for Muon Phase Rotation 3524
 
  • Y. Arimoto, M. Aoki, S. Araki, Y. Eguchi, K. Hirota, I. Hossain, I. Itahashi, Y. Kuno, Y. Kuriyama, Y. Nakanishi, A. Sato, M. Y. Yoshida
    Osaka University, Osaka
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • A. Kurup
    Imperial College of Science and Technology, Department of Physics, London
  • Y. Mori
    KURRI, Osaka
  • C. Ohmori
    KEK, Ibaraki
  • T. Oki
    Tsukuba University, Ibaraki
 
  PRISM is a next-generation of muon source which provides high purity, high intense and high brightness beam. In PRISM, a PRISM-FFAG is one of key section which make a muon beam narrow energy width by using phase rotation technique. To demonstrate the phase rotation, a six-cell FFAG ring has been constructed; the ring consists of full size of scaling-FFAG magnets and a high gradient rf cavity. The experiment is achieved by injecting alpha particles from a radioisotope source as a beam. Construction of the ring has been started from September, 2007; beam duct has been designed and installed, the six FFAG magnets has been aligned, etc. In this paper, we will present the design of the ring and the construction (alignment, etc) from engineering point of view.