A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Mytrochenko, V. V.

Paper Title Page
MOPP100 Performance of Compact Electron Injector on Evanescent Oscillations 790
 
  • V. V. Mytrochenko, M. I. Ayzatskiy, I. V. Khodak, K. Kramarenko, V. A. Kushnir, A. Opanasenko, S. A. Perezhogin, D. L. Stepin, Z. V. Zhiglo
    NSC/KIPT, Kharkov
 
  An injector on the basis of a resonator structure with exponentially increasing amplitude of the electric field along an axis was developed at NSC KIPT. The injector is supplied with RF power through a rectangular-to-coaxial waveguide transition to provide axial symmetry of the accelerating field. The injector was designed to provide the output current up to 1 A at particle energy up to 1 MeV. Results of the injector test are presented in the work. Results obtained are compared with calculated ones.  
THPC027 Pulsed RF Accelerator of Electrons with Beam Recirculation 3038
 
  • V. V. Mytrochenko, M. I. Ayzatskiy, P. Gladkikh, V. A. Kushnir, A. Opanasenko, A. Y. Zelinsky
    NSC/KIPT, Kharkov
  • S. Chemerisov, D. Ehst
    ANL, Argonne, Illinois
 
  We discuss the project of upgrading existent 20 MeV L-band electron linac at Argonne National Laboratory aimed at electron energy increasing. It is shown that the proposed beam recirculation will provide on the accelerator output an electron beam with a pulse current 0.5 A and energy of particles 45 MeV. Problems of stability of recirculating beam are discussed.  
THPP019 Adjustment of a New Pre-stripping Section the Multicharge Ion Linear Accelerator (MILAC) 3410
 
  • O. F. Dyachenko, V. A. Bomko, Ye. V. Ivakhno, A. P. Kobets, V. I. Misjura, V. V. Mytrochenko, A. V. Zabotin, B. V. Zajtsev
    NSC/KIPT, Kharkov
 
  In the Kharkov Institute of Physics and Technology the works on commissioning of a new prestripping section (A/q = 4), intend for accelerating a high current beam of light ions from 30 keV/u to 975 keV/u come to the end. Results of final tuning of irregular interdigital accelerating structure with alternating phase focusing and stepped changing the synchronous phase along the focusing period are presented. Process of preliminary adjustment of structure by means of traditional developed earlier methods: the additional current-carrying stems and the end resonant tuning elements (ERTEs) is described. New effective inductance-capacitor tuning devices as rods located on the drift tube side, opposite to their holders («contrivance») are developed and their use in real structure is shown. «Contrivances» have proved as the effective element of tuning locally influencing value of an electric field in the nearest gaps and lowering resonant frequency without noticeable worsening of electrodynamic characteristics of resonant system.