A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Murokh, A. Y.

Paper Title Page
MOPP086 A Novel Fabrication Technique for the Production of RF Photoinjectors 751
 
  • P. Frigola, R. B. Agustsson, S. Boucher, A. Y. Murokh
    RadiaBeam, Marina del Rey
  • D. Cormier, T. Mahale
    NCSU, Raleigh
  • L. Faillace
    Rome University La Sapienza, Roma
  • J. B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
 
  Recent developments in Direct Metal Free Form Fabrication (DMFFF) technology may make it possible to design and produce near netshape copper structures for the next generation of very high duty factor, high gradient radio frequency (RF) photoinjectors. RF and thermal-management optimized geometries could be fully realized without the usual constraints and compromises of conventional machining techniques. A photoinjector design incorporating DMFFF and results from an initial material feasibility study will be reported.  
TUPC072 Design and Fabrication of an X-band Traveling Wave Deflection Mode Cavity for Longitudinal Characterization of Ultra-short Electron Beam Pulses 1215
 
  • A. Y. Murokh, R. B. Agustsson, S. Boucher, P. Frigola
    RadiaBeam, Marina del Rey
  • D. Alesini
    INFN/LNF, Frascati (Roma)
  • R. J. England, J. B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
  • V. Yakimenko
    BNL, Upton, Long Island, New York
 
  An X-band Traveling wave Deflector mode cavity (XTD) has been developed at Radiabeam Technologies to perform longitudinal characterization of the sub-picosecond ultra-relativistic electron beams. The device is optimized for the 100 MeV electron beam parameters at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory, and is scalable to higher energies. An XTD is designed to operate at 11.424 GHz, and features short filling time, femtosecond resolution, and a small footprint. RF design, fabrication procedure, and commissioning plans are presented. An experimental program at ATF to utilize the deflector for compressed beam characterization is discussed, including proposed measurements of the phase space filamentation due to non-linear processes in a chicane compressor.  
TUPC073 A Real-time Bunch Length Terahertz Interferometer 1218
 
  • G. Andonian, G. Travish
    UCLA, Los Angeles, California
  • S. Boucher, P. Frigola, A. Y. Murokh
    RadiaBeam, Marina del Rey
 
  With the recent development of advanced photoinjectors and next generation light sources, the progression towards high-current, ultra-short beams is very important. The measurement of these short pulses, with sub-picosecond resolution is essential for successful beam operation and optimization. This paper describes the development of a real-time, shot-to-shot bunch length diagnostic utilizing a novel beam auto-correlation technique.  
TUPP150 The Radiatron: A High Average Current Betatron for Industrial and Security Applications 1860
 
  • S. Boucher, R. B. Agustsson, P. Frigola, A. Y. Murokh, M. Ruelas
    RadiaBeam, Los Angeles
  • F. H. O'Shea, J. B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
 
  The fixed-field alternating-gradient (FFAG) betatron has emerged as a viable alternative to RF linacs as a source of high-energy radiation for industrial and security applications. For industrial applications, high average currents at modest relativistic electron beam energies, typically in the 5 to 10 MeV range, are desired for medical product sterilization, food irradiation and materials processing. For security applications, high power x-rays in the 3 to 20 MeV range are needed for rapid screening of cargo containers and vehicles. In a FFAG betatron, high-power output is possible due to high duty factor and fast acceleration cycle: electrons are injected and accelerated in a quasi-CW mode while being confined and focused in the fixed-field alternating-gradient lattice. The beam is accelerated via magnetic induction from a betatron core made with modern low-loss magnetic materials. Here we present the design and status of a prototype FFAG betatron, called the RadiaTron, as well as future prospects for these machines.