A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Müller, W. F.O.

Paper Title Page
MOPC065 Wake Field Simulations for Structures of the PITZ RF Photoinjector: Emittance growth estimations 217
 
  • E. Arevalo, W. Ackermann, E. Gjonaj, W. F.O. Müller, S. Schnepp, T. Weiland
    TEMF, Darmstadt
 
  One of the main concerns in the design of electron guns is the generation of low-emittance beams. One source of emittance growth is the beam-surrounding effect, which can be estimated from the wake potentials along the beam path. For the calculation of these potentials an accurate knowledge of the short range wake fields induced in the different parts of the gun with geometrical discontinuities is necessary. The computation of these wake fields is a challenging problem, as an accurate resolution for both the small bunch and the large model geometry is needed. Here with the help of numerical wake-potential calculations we analytically estimate the emittance growth for the RF electron gun of the Photoninjector Test Facility at DESY Zeuthen (PITZ).  
TUPD022 Electron Beam Polarimetry at the S-DALINAC 1476
 
  • R. Barday, U. Bonnes, C. Eckardt, R. Eichhorn, J. Enders, C. Heßler, J. Kalben, Y. Poltoratska
    TU Darmstadt, Darmstadt
  • W. F.O. Müller, B. Steiner, T. Weiland
    TEMF, Darmstadt
 
  It is planned to carry out experiments at the Superconducting Darmstadt Linear Accelerator S-DALINAC with both polarized electron and photon beams at the energy of the electron beam between 10 and 130 MeV. In order to extract asymmetry from these experiments the absolute degree of the electron beam polarization needs to be known. We present the existing and planned polarimeters at the source of polarized electrons and the experimental sites, especially a 100 keV Mott polarimeter and Möller polarimeter for 15-130 MeV electrons.  
TUPD027 Commissioning of the Offline-teststand for the S-DALINAC Polarized Injector SPIN 1482
 
  • C. Heßler, R. Barday, U. Bonnes, M. Brunken, C. Eckardt, R. Eichhorn, J. Enders, M. Platz, Y. Poltoratska, M. Roth
    TU Darmstadt, Darmstadt
  • W. Ackermann, W. F.O. Müller, B. Steiner, T. Weiland
    TEMF, Darmstadt
  • K. Aulenbacher
    IKP, Mainz
 
  At the superconducting Darmstadt linear electron accelerator S-DALINAC a new injector for polarized electrons is under development. For this purpose an off-line test stand has been constructed. It consists of the source of polarized electrons and a test beamline including a Wien filter for spin manipulation, a Mott polarimeter for polarization measurement and various beam steering and diagnostic elements. The polarized electron beam is produced by photoemission from a strained GaAs cathode. We report on the status of this project and present first results of the measurements of the beam properties. We also give an outlook on the upcoming installation of SPIN at the S-DALINAC.  
WEPP091 Injector Upgrade for the S-DALINAC 2731
 
  • T. Kuerzeder, A. Araz, M. Brunken, J. Conrad, R. Eichhorn, H.-D. Gräf, M. Hertling, F. Hug, M. Konrad, M. Platz, A. Richter, S. Sievers, T. Weilbach
    TU Darmstadt, Darmstadt
  • W. Ackermann, W. F.O. Müller, B. Steiner, T. Weiland
    TEMF, Darmstadt
  • J. D. Fuerst
    ANL, Argonne, Illinois
 
  Since 1991 the superconducting Darmstadt linear accelerator S-DALINAC provides an electron beam of up to 130 MeV for nuclear and astrophysical experiments. Currently its injector delivers beams of up to 10 MeV with a current of up to 60 μA. The upgrade aims to increase both parameters to 14 MeV and 150 μA in order to allow more demanding astrophysical experiments. Therefore, a modified cryostat module equipped with two new cavities is required. Due to an increase in RF power to 2 kW the old coaxial RF input couplers, being designed for a maximum power of 500 W, have to be replaced by new waveguide couplers. We review the design principles and report on the fabrication of the coupler and the whole module.  
THPC038 Beam Dynamic Simulations of the New Polarized Electron Injector of the S-DALINAC 3062
 
  • B. Steiner, W. Ackermann, S. S. Franke, W. F.O. Müller, T. Weiland
    TEMF, Darmstadt
  • R. Barday, C. Eckardt, R. Eichhorn, J. Enders, C. Hessler, Y. Poltoratska, A. Richter, M. Roth
    TU Darmstadt, Darmstadt
 
  Aiming at an extension of the experimental possibilities at the Superconducting Darmstadt electron linear accelerator S-DALINAC, a polarized gun is going to be constructed at the moment. The new injector will be able to supply polarized electrons with kinetic energy in the 100 keV range and should add to the present unpolarized thermionic 250 keV source. The design requirements include a polarization degree of at least 80%, a mean current intensity of 60 μA and a 3 GHz cw time structure. The gun part is simulated in CST MAFIA whereas subsequent beam dynamics simulations are performed in V-Code. Initial conditions for the V-Code’s moment approach are extracted from the CST MAFIA simulations. The injector consists of short triplets, an alpha magnet, a Wien filter, a Mott polarimeter, a chopper/prebuncher system and beam diagnostic elements. For the simulations, the 3D electromagnetic fields of the beam line elements are used by means of a Taylor series expansion of variable order. All components except the chopper and a collimator is represented in the simulations. Recent beam dynamic results will be presented.