A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Müller, A.-S.

Paper Title Page
MOPD018 Energy Dependent Measurements of Gamma and Neutron Dose at ANKA 484
 
  • I. Birkel, E. Huttel, A.-S. Müller, N. J. Smale, P. Wesolowski
    FZK, Karlsruhe
 
  Gamma and neutron radiation dose rate around an electron storage ring are proportional to the number of lost particles in a certain time. They are depending on beam energy, current, lifetime and operating conditions of the storage ring. The online area monitoring network of ANKA makes it possible to measure the radiation from the decaying beam at eight stations distributed all over the ANKA hall. Measurements of the ambient dose at beam energies from 800 MeV to 2.5 GeV show higher dose rates around and in the forward direction of insertion devices and other devices with restricted horizontal or vertical aperture.  
TUPP023 Direct Detection of the Electron Cloud at ANKA 1580
 
  • S. Casalbuoni, A. W. Grau, M. Hagelstein, A.-S. Müller
    FZK, Karlsruhe
  • U. Iriso
    ALBA, Bellaterra
  • E. M. Mashkina
    University of Erlangen-Nürnberg, Physikalisches Institut II, Erlangen
  • R. Weigel
    Max-Planck Institute for Metal Research, Stuttgart
 
  Low energy electrons generated by the interaction of high energy particles with the beam pipe surface can be detrimental for accelerators performances increasing the vacuum pressure, the heat load and eventually producing beam instabilities. The low energy electrons accumulating in the beam pipe are often referred to as electron cloud. In this presentation we report on the direct evidence of the electron cloud in the electron storage ring of the synchrotron light source ANKA (ANgstrom source KArlsruhe).  
WEPC024 Low Beta Structure for the ANKA Storage Ring 2034
 
  • E. Huttel, I. Birkel, A.-S. Müller, P. Wesolowski
    FZK, Karlsruhe
 
  The ANKA storage ring has a fourfold symmetry with a double DBA structure. Four (~1.7 m) straight sections are used for the RF and the injection. Four sections (~ 4.5 m) are used for insertion devices (three installed). The beta functions in these sections are 14, respectively 7 m (horizontal/vertical). This is not ideal for small gap (7 mm) insertion devices. Reducing the vertical beta function to 2 m is possible with the present magnet configuration and is done for special user operation. Reducing both the horizontal and vertical beta function is favoured for one future beam line. This will afford a change of the present magnet configuration. Different options have been calculated and will be discussed.  
WEPC046 Characterizing THz Coherent Synchrotron Radiation at the ANKA Storage Ring 2091
 
  • A.-S. Müller, I. Birkel, S. Casalbuoni, B. Gasharova, E. Huttel, Y.-L. Mathis, D. A. Moss, N. J. Smale, P. Wesolowski
    FZK, Karlsruhe
  • E. Bruendermann
    Ruhr-Universität Bochum, Bochum
  • T. Bueckle, M. Klein
    University of Karlsruhe, Karlsruhe
 
  In a synchrotron radiation source coherent infrared (IR) radiation is emitted when the bunch length is comparable to the wavelength of the emitted radiation. To generate coherent THz (far IR) radiation, the ANKA storage ring is operated regularly in a dedicated low-alpha optics. Different bunch lengths, corresponding to different spectral ranges of the THz spectrum and various electron beam energies can be offered, depending on user demand. The radiation emitted in the fringe field of a dipole magnet, the so-called edge radiation, is detected at the ANKA-IR beamline. This paper presents radiation properties like THz beam profiles and power measurements in the framework of characterising the coherent THz radiation to optimise the power, frequency and spatial output of the ANKA storage ring. First experiments showed a time averaged power of up to 0.2 mW suggesting a THz pulse peak power of at least several tens of mW.  
WEPC047 Modeling the Shape of Coherent THz Pulses Emitted by Short Bunches in an Electron Storage Ring 2094
 
  • A.-S. Müller, S. Casalbuoni, M. Fitterer, E. Huttel, Y.-L. Mathis
    FZK, Karlsruhe
  • M. T. Schmelling
    MPI-K, Heidelberg
 
  A sufficiently short electron bunch will emit coherent synchrotron radiation of wavelengths equal to or larger than the bunch length. The shape of the emitted THz pulse depends amongst other things on the original shape and length of the bunch’s charge distribution. A Michelson interferogram of the THz signal therefore contains information on the generating bunch. However, systematic effects make a bunch length measurement based on that technique non-trivial. In order to understand the variables involved, an analytical model of the pulse generation is needed. In this paper, a derivation of the THz pulse shape form first principles with special emphasis in the time domain is presented. The impact of charge distribution parameters on the Michelson interferogram is discussed.