A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Möhl, D.

Paper Title Page
THPP048 Experimental Demonstration of Longitudinal Ion Beam Accumulation with Electron Cooling 3470
 
  • C. Dimopoulou, B. Franzke, T. Katayama, F. Nolden, G. Schreiber, M. Steck
    GSI, Darmstadt
  • D. Möhl
    CERN, Geneva
 
  Recently, two longitudinal beam compression schemes have been successfully tested in the Experimental Storage Ring (ESR) at GSI with a beam of bare Ar ions at 65 MeV/u injected from the ion synchrotron SIS18. The first employs Barrier Bucket pulses, the second makes use of multiple injections around the unstable fixed point of a sinusoidal RF bucket at h=1. In both cases continuous electron cooling maintains the stack and merges it with the freshly injected bunch *. Using the beam diagnostic devices in the ring both stacking processes were demonstrated under the same conditions. The dependence of the accumulation performance on the available rf potential, the electron cooling strength as well as on the synchronization conditions between injection kicker pulse and rf wave was investigated. These experimental results provide the proof of principle for the planned fast stacking of Rare Isotope Beams aiming at high luminosities in the New Experimental Storage Ring ** of the FAIR project ***.

* C. Dimopoulou et al., JACoW Proceedings of COOL07, Bad Kreuznach,2007.
** C. Dimopoulou et al., PRST-AB 10 (2007) 020101.
*** FAIR Baseline Technical Report,www.gsi.de/fair/.

 
THPP051 Stochastic Cooling in the Framework of the FAIR Project at GSI 3479
 
  • F. Nolden, A. Dolinskii, B. Franzke, U. Jandewerth, T. Katayama, C. Peschke, P. Petri, M. Steck
    GSI, Darmstadt
  • D. Möhl
    CERN, Geneva
 
  Stochastic cooling at FAIR will be one of the instruments to get cooled beams of rare isotopes and antiprotons for high resolution experiments. Stochastic cooling systems will be installed in the CR and RESR storage rings. The Collector Ring CR is a dedicated storage ring for the first step cooling of antiproton beams (3 GeV or β=0.97) produced at the antiproton production target, and of radioactive beams (740 MeV/u or β=0.83) prepared in the Super Fragment Separator. The pick-up and kicker systems have designs which allow very efficient cooling for both particle velocities. There will be different ring optical settings for optimum cooling of antiprotons or rare isotopes. Whereas the next cooling step for rare isotopes will be electron cooling, antiprotons will be accumulated in the RESR using a similar accumulation scheme which was formerly applied at the AA at CERN. The paper presents the CR and RESR system layouts and new hardware developments.  
THPP089 Gamma Transition Jump for PS2 3572
 
  • W. Bartmann, M. Benedikt, E. Métral, D. Möhl
    CERN, Geneva
  • S. Peggs
    BNL, Upton, Long Island, New York
 
  The PS2, which is proposed as a replacement for the existing ~50-year old PS accelerator, is presently considered to be a normal conducting synchrotron with an injection kinetic energy of 4 GeV and a maximum energy of 50 GeV. One of the possible lattices (FODO option) foresees crossing of transition energy near 10 GeV. Since many intensity dependent effects can take place in both the longitudinal and the transverse planes a fast jump of gamma transition is necessary in order to pass the non-adiabatic region rapidly. The aim of the present paper is on the one hand to scale the gamma transition jump, used since 1973 in the PS, to the projected PS2 and on the other hand based on these results the analysis of the implementation and feasibility of a gamma transition jump scheme in a conventional FODO lattice.