A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Michel, P.

Paper Title Page
WEPP105 First Operation Results of the Superconducting Photoinjector at ELBE 2755
 
  • J. Teichert, A. Arnold, A. Buechner, H. Buettig, D. Janssen, M. Justus, U. Lehnert, P. Michel, P. Murcek, R. Schurig, G. Staats, F. Staufenbiel, R. Xiang
    FZD, Dresden
  • T. Kamps
    BESSY GmbH, Berlin
  • G. Klemz, I. Will
    MBI, Berlin
  • A. Matheisen
    DESY, Hamburg
 
  In November 2007 the first electron beam was generated from the superconducting RF photo electron gun installed at the ELBE linear accelerator facility. The injector together with a sophisticated laser system and a diagnostic beam line were developed and constructed within a collaboration of BESSY, DESY, MBI and FZD. Delivering a CW beam with up to 1 mA average current, a significant improvement of the beam quality like an increase of the bunch charge up to 1 nC and a reduced transverse emittance will be obtained. After the cool-down of the cryostat the RF properties of the 3½-cell niobium cavity like pass band mode frequencies, unloaded quality factor versus accelerating gradient, Lorentz force detuning, and He pressure influence were measured. The first beam was extracted of a Cu photo cathode using a 262 nm UV laser system with a repetition rate of 100 kHz and about 0.4 W laser power. Later, caesium telluride photo cathodes will be applied. The installed diagnostics allow beam current, energy, energy spread, transverse emittance and bunch length measurements of the beam. The results of these measurements and the operational experiences with the gun will be presented.  
WEPP134 Ultra-short x-ray Radiation coming from a Laser Wakefield Accelerator 2809
 
  • V. Leurent, L. Divol, T. Doeppner, D. H. Froula, S. H. Glenzer, P. Michel, J. Palastro
    LLNL, Livermore, California
  • C. E. Clayton, C. Joshi, K. A. Marsh, A. E. Pak, J. E. Ralph, T.-L. Wang
    UCLA, Los Angeles, California
  • B. B. Pollock, G. R. Tynan
    UCSD, La Jolla, California
 
  A Laser Wakefield Accelerator (LWFA) is under development at LLNL Jupiter Laser Facility to produce multi-GeV electron bunches promising to provide a bright and compact source of x-ray radiation for high energy density studies. The interaction of a high power (200 TW), short laser (50 fs) pulse with neutral He gas can accelerate monoenergetic electrons up to 1 GeV in a stable self-guiding regime*, over a dephasing length of 1 cm (for a plasma density of 1.5x1018 cm-3), overcoming the limitation of vacuum diffraction and allowing long interaction lengths for LWFA. The waveguide can be extended over several centimeters by using a novel scheme, which employs an external magnetic field (up to 5 T uniform along 12 cm) to control the radial heat flux** resulting from the interaction of a high energy (100 J), long pulse (1 ns) laser with a gas tube. The acceleration of electrons over several centimeters can produce multi-GeV bunches and thus a powerful x-ray source. Analysis will be presented on femtosecond x-ray radiation produced by wiggling an electron bunch with energy above 1 GeV in this new LWFA scheme.

* W. Lu et al., Phys. Rev. Spec. Top-ac 10, 061301 (2007)
** D. H. Froula et al., Phys. Rev. Lett. 98, 135001 (2007)