A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Mehta, R.

Paper Title Page
MOPP127 Commissioning of Superconducting Linac at IUAC - Initial Challenges and Solutions 856
 
  • S. Ghosh, S. Babu, J. Chacko, A. Choudhury, G. K. Chowdhury, T. S. Datta, D. Kanjilal, S. Kar, M. Kumar, A. Mandal, D. S. Mathuria, R. S. Meena, R. Mehta, K. K. Mistri, A. Pandey, P. Patra, P. N. Prakash, A. Rai, A. Roy, B. K. Sahu, S. S. Sonti, J. Zacharias
    IUAC, New Delhi
 
  During initial acceleration of ion beam through the first module of linac having eight superconducting (SC) niobium quarter wave resonators (QWR), energy gains were found to be much lower. Major problem encountered was limitation of accelerating fields in the QWR achieved at much higher RF power (up to 300 W) leading to cable melting, metal coating on SC surface and increased cryogenic losses. Cold leaks in the niobium-stainless steel transition assemblies and niobium tuner bellows also posed a major challenge. A novel way of damping mechanical vibration was implemented to reduce RF power. Cooling was improved by installing a hemispherical structure on the resonator. The drive coupler was redesigned to eliminate metal coating. Design of the tuner/transition flange assemblies was modified to avoid cold leak. After incorporation of these modifications, on-line beam acceleration through Linac was accomplished. Pulsed (1.3 ns) Silicon beam of 130 MeV from Pelletron accelerator was further bunched to 250 ps by SC Superbuncher. After acceleration through the linac module and subsequent re-bunching using SC Rebuncher, 158 MeV Silicon beam having pulse width of 400 ps was delivered.