A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Mascali, D.

Paper Title Page
MOPC140 Status of the Multipurpose Fully Superconducting ECR Ion Source 400
 
  • G. Ciavola, L. Celona, S. Gammino, F. Maimone, D. Mascali
    INFN/LNS, Catania
  • H. A. Koivisto
    JYFL, Jyvaskyla
  • R. Lang, J. Maeder, J. Rossbach, P. Spaedtke, K. Tinschert
    GSI, Darmstadt
 
  The MSECRIS source has been designed with the aim to exceed the highest currents of highly charged heavy ions available up to now. It is based on a minimum B trap made of a hexapole and three solenoids. The design magnetic field is 2.7 T for the hexapole and 4.5 T for the mirror field, in order to permit to operate not only at 28 GHz but also at higher frequency, thus increasing the plasma density and finally the beam current. Such high level of magnetic field is a challenge because of the forces arising on the superconducting coils and it largely exceeds the highest magnetic field available for existing ECRIS. A description of the source and of its preliminary results will be given. The source has been built in the frame of the European collaboration EURONS/JRA07-ISIBHI and it is now installed at the EIS testbench of GSI.  
MOPC151 Status of the Versatile Ion Source VIS 430
 
  • F. Maimone, L. Celona, F. Chines, G. Ciavola, G. Gallo, N. Gambino, S. Gammino, D. Mascali, R. Miracoli, S. Passarello, E. Zappalà
    INFN/LNS, Catania
 
  The characteristics of the ideal injector for high power proton accelerators has been studied in the past with the TRIPS ion source built at INFN-LNS, Catania and now in operation at INFN-LNL, Legnaro. The beam production must obey to the request of high brightness, stability and reliability. The new Versatile Ion Source (VIS) is a permanent magnet version of the TRIPS source with a simplified and robust extraction system. It operates up to 80 kV without a bulky high voltage platform, producing multi-mA beams of protons and H2+. The description of the source design and the preliminary performance will be presented. An outline of the forthcoming developments is given, with particular care to the use of a low loss dc break and to the use of a travelling wave tube amplifier to get an optimum matching between the microwave generator and the plasma.