A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Mainaud Durand, H.

Paper Title Page
MOPP028 Technical Specification for the CLIC Two-Beam Module 607
 
  • G. Riddone, H. Mainaud Durand, D. Schulte, I. Syratchev, W. Wuensch, R. Zennaro
    CERN, Geneva
  • R. Nousiainen
    HIP, University of Helsinki
  • A. Samoshkin
    JINR, Dubna, Moscow Region
 
  The 2-m long CLIC module comprises four decelerating structures and two quadrupoles forming a FODO cell. Each decelerating structure powers two accelerating structures. Some accelerating structures are removed at regular intervals to liberate space for a quadrupole of a FODO lattice. The present layout of the standard and special modules is presented as well as the status of the system integration. The main requirements for the different sub-systems (alignment, supporting, stabilization, cooling and vacuum) are introduced together with the major integration constraints. For the key components the specification on pre-alignment and beam-based alignment tolerances is also recalled as well as their influence on the requirements of other sub-systems. For example the required stable thermal behavior and the tight tolerances of accelerating structure (the requirements for the accelerating structure pre-alignment is 0.014 mm at 1? ) in the CLIC linac largely directly the sizing and integration of the cooling system. The paper also covers the main issues related to the module integration in the tunnel. In the last part, the critical issues and future activities are summarized.  
TUPD020 Remote Alignment of Low Beta Quadrupoles with Micrometric Resolution 1470
 
  • M. Acar, J. Boerez, A. Herty, H. Mainaud Durand, A. Marin, J.-P. Quesnel
    CERN, Geneva
 
  Considering their location in a high radiation environment and the alignment tolerances requested, the Low Beta quadrupoles of LHC will be positioned remotely (controlling 5 degrees of freedom), with a displacement resolution of few microns in horizontal and vertical. Stepping motor gearbox assemblies are plugged into the jacks which support the cryomagnets in order to move them to the desired position regarding the quality of the beam collisions in the detectors. This displacement will be monitored in real time by the sensors located on the magnets. This paper describes the positioning strategy implemented as well as the software tools used to manage it.