A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Maccaferri, R.

Paper Title Page
WEPD003 Manufacture and Test of a Small Ceramic-insulated Nb3Sn Split Solenoid 2404
 
  • B. Bordini, R. Maccaferri, L. Rossi, D. Tommasini
    CERN, Geneva
 
  A small split solenoid wound with high Jc Nb3Sn conductor, constituted by a 0.8 mm Rod Re-stack Process (RRP) strand, was built and tested at CERN in order to study the applicability of:
  1. ceramic wet glass braid insulation without epoxy impregnation of the magnet;
  2. a new heat treatment devised at CERN and particularly suitable for reacting RRP Nb3Sn strands.
This paper briefly describes the solenoid and the experimental results obtained during 4.4 K and 1.9 K tests. The split solenoid consists of two coils (25 mm inner diameter, 51.1 mm outer diameter, 12.9 mm height). The coils were initially separately tested, in an iron mirror configuration, and then tested together in split solenoid configuration. In all the tests at 4.4 K the coils reached a current higher than 97% of their short sample limits at the first quench; in split solenoid configuration the maximum field in the coils and in the aperture were respectively 10.7 T and 12.5 T. At 1.9 K the coils had premature quenches due to self field instability despite the rather high RRR of the two coils (190 and 270). This phenomenon at 1.9 K, expected by our theory* and also confirmed by strand measurements, is discussed.

*B. Bordini, E. Barzi, S. Feher, L. Rossi, and A. V. Zlobin. "Self-Field Effects in Magneto-Thermal Instabilities for Nb-Sn Strands," to be published in IEEE Trans. Appl. Supercond. 2008.

 
WEPD006 Conceptual Design of Superferric Magnets for PS2 2410
 
  • L. Bottura, G. De Rijk, M. Karppinen, G. Kirby, R. Maccaferri, C. Maglioni, V. Parma, L. Rossi, W. Scandale, L. Serio, D. Tommasini
    CERN, Geneva
 
  We analyze feasibility and cost of a superferric magnet design for the PS2, the novel 50 GeV ring that should replace the PS in the CERN injector chain. Specifically, we provide the conceptual design of dipole and quadrupoles, including considerations on cryogenics and powering. The magnets have warm iron yoke, and cryostated superconducting coils embedded in the magnet, which reduces AC loss at cryogenic temperature. The superconductor has large operating margin to endure beam loss and operating loads over a long period of time. Although conservative, and without any critical dependence on novel technology developments, this superconducting option appears to be attractive as a low-power alternative to the normal-conducting magnets that are the present baseline for the PS2 design. In addition it provides flexibility in the selection of flat-top duration at no additional cost.