A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Luck, C.

Paper Title Page
MOPP091 Upgrade of Input Power Coupling System for the SNS RFQ 763
 
  • Y. W. Kang, A. V. Aleksandrov, P. E. Gibson, T. W. Hardek, C. Luck, R. C. Peglow, A. V. Vassioutchenko
    ORNL, Oak Ridge, Tennessee
 
  A RF input power coupler system has been developed for upgrade of input coupling to the RFQ in the SNS linac front-end. The design employs two coaxial loop couplers for 402.5 MHz operation. Two couplers are used in parallel to power the accelerating structure with up to 800 kW total peak power at 8% duty cycle. Each coupler loop has a coaxial ceramic window that is connected to each output of a magic-T waveguide hybrid splitter through a coaxial to waveguide transition. The coaxial loop couplers have been designed, manufactured, and high power processed. This paper presents the following: RF and mechanical designs of the couplers and system, procedure and result of high power RF conditioning, and test and operation results of the upgraded system.  
THPP086 Diamond Stripper Foil Experience at SNS and PSR 3563
 
  • R. W. Shaw, Y.-J. Chen, R. L. Coleman, D. M. Gardner, C. Luck, A. G. McDermott, M. A. Plum, L. L. Wilson
    ORNL, Oak Ridge, Tennessee
  • M. J. Borden, T. Spickermann
    LANL, Los Alamos, New Mexico
  • C. S. Feigerle
    University of Tennessee, Knoxville, Tennessee
 
  The SNS is currently operating at about 15% of the 1.4 MW design power, and the diamond stripper foils developed at ORNL continue to perform well. Several corrugated, nanocrystalline diamond stripping foils have been tested at SNS. Beyond about 300 C of injected charge, significant distortion and darkening of the foils is observed. These foils are currently limited in freestanding area to about 17x25 mm due to stress-induced tears in larger foils; this limit positions the residual silicon wafer mounting handle close enough to the circulating beam that additional losses have been observed. The PSR experience with these diamond foils has been promising, with the interesting observation that both the foil current due to secondary emission of electrons and the thermionic foil current are reduced for diamond foils relative to LANL/KEK foils. For comparable thickness foils, losses due to the Ho yield also appear to be higher for diamond. A recent development in our foil preparation has been a change to nano-seeded nucleation from the earlier microcrystal slurry ultrasonic abrasion technique. This has led to a more reproducible and uniform foil morphology with smaller crystallites.