A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Liu, D. K.

Paper Title Page
TUPC017 Beam Instrumentation System Development and Commissioning in SSRF 1080
 
  • Y. B. Leng, J. Chen, Y. Z. Chen, Z. C. Chen, G. Q. Huang, D. K. Liu, Y. B. Yan, K. R. Ye, C. X. Yin, J. Yu, L. Y. Yu, R. Yuan, G. B. Zhao, L. Y. Zhao, W. M. Zhou, Y. Zou
    SINAP, Shanghai
 
  In recent months the first beams have been stored in the Storage Ring of the Shanghai Synchrotron Radiation Facility (SSRF). The brief introduction will be given of the beam diagnostics system development. The initial commissioning results including beam profile monitors, beam position monitors (BPMs), DC current monitors (DCCT), and synchrotron radiation monitor (SRM) will be reported in this paper.  
WEPC008 Status of the SSRF Storage Ring 1998
 
  • Z. M. Dai, D. K. Liu, L. G. Liu, L. Yin, Z. T. Zhao
    SINAP, Shanghai
 
  The SSRF storage ring is composed of 20 DBA cells with energy of 3.5GeV and circumference of 432m. The installation of the SSRF storage ring was started on June 11, 2007, and finished in the beginning of Dec. 2007. The system tests of hardware and software for storage ring were completed in the middle of Dec. 2007. The commissioning of the storage ring started on Dec. 21, 2007, and the 100mA stored beam was achieved for the first time on Jan. 3, 2008. The design, installation and commissioning of the SSRF storage ring are described in this paper  
THPC162 The SSRF Timing System 3369
 
  • L. Y. Zhao, D. K. Liu, C. X. Yin
    SINAP, Shanghai
 
  In the Shanghai Synchrotron Radiation Facility (SSRF), various equipment in the 150MeV linac, the full energy booster and the 3.5GeV storage ring need to be triggered and synchronized by a low jitter timing system. An event system based on distribution network is implemented in the SSRF timing system. In this paper, the software and hardware structure of the SSRF timing system are described and the system performance is presented.