A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Liljeby, L.

Paper Title Page
MOPC114 Status of the Electrostatic and Cryogenic Double Ring DESIREE 331
 
  • P. Löfgren, G. Andler, L. Bagge, M. Björkhage, M. Blom, H. Danared, A. Källberg, S. Leontein, L. Liljeby, A. Paal, K.-G. Rensfelt, A. Simonsson
    MSL, Stockholm
  • H. Cederquist, M. Larsson, S. Rosén, H. T. Schmidt
    Stockholm University, Department of Physics, Stockholm
 
  DESIREE is a double electrostatic storage ring being built at the Manne Siegbahn Laboratory and Stockholm University. The two rings in DESIREE have the same circumference, 8.7m, and a common straight section along which stored ions can interact. The ion optics for both rings will be housed in a single double walled vacuum chamber built like a cryostat with a radiation screen and several layers of super insulation in between the two chambers. The inner chamber, which holds all the optical elements, will be cooled by four cryogenerators attached to the bottom of this chamber. It is constructed in pure aluminum to ensure good thermal conductivity over the whole structure. The whole accelerator structure will be cooled below 20K. This low temperature in combination with the unique double ring structure will result in a powerful machine for studying interactions between cold molecular ions close to zero relative energy. The outer vacuum chamber is constructed in steel with a high magnetic permeability to provide an efficient screening of the earth magnetic field. DESIREE will be provided with two injectors which will be able to supply both positive and negative ions to both rings.  
MOPC141 Design of a Novel Tubular Electron String Ion Source (TESIS) 403
 
  • E. Syresin, D. E. Donets, E. D. Donets, E. E. Donets, V. B. Shutov
    JINR, Dubna, Moscow Region
  • V. M. Drobin, A. V. Shabunov, Yu. A. Shishov
    JINR/LHE, Moscow
  • A. E. Dubinov, R. M. Garipov, I. V. Makarov
    VNIIEF, Sarov (Nizhnii Gorod)
  • L. Liljeby
    MSL, Stockholm
 
  The project, started in 2007 is directed to creation of Tubular Electron String Ion Source (TESIS) and to basic studies of electron strings in tubular geometry. The collaboration consists of JINR (Dubna) and Russian Federal Nuclear Center (Sarov, Russia), Manne Siegbahn Laboratory (Stockholm, Sweden), TRIUMF and Atomic Energy of Canada Ltd. (Canada). Tubular concept of ion source has been proposed few years ago*. Preliminary theoretical estimations and numerical simulations have been done**,*** that allowed to start experimental realization of this project. New tubular source with a superconducting solenoid up to 5 Tesla should be constructed in 2009. It is expected that this new TESIS (“Krion-T1”) will meet all rigid conceptual and technological requirements and should provide ion output on a level, approaching to 10 mA of Ar16+ ions in the pulse mode and about 10 mA of Ar16+ ions in the average current mode. Having these output parameters, “Krion-T1” TESIS should be an operational prototype of further TESIS sources for all kinds of the possible applications. Simulation results and a basic scetch of the TESIS construction will be presented.

*Donets E. D. et al. Rev. Sci. Instrum. 73, 696 (2002).
**Donets E. D., Donets E. E., Becker R. et al. Rev. Sci. Instrum.75, 1566 (2004).
***Donets E. E. J. of Phys.: Conf. Series 2, 97 (2004).