A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Li, Y. M.

Paper Title Page
MOPP112 Status of the PEFP Superconducting RF Project 820
 
  • S. An, Y.-S. Cho, B. H. Choi, C. Gao, Y. M. Li, Y. Z. Tang, L. Zhang
    KAERI, Daejon
 
  Superconducting RF project of the Proton Engineering Frontier Project (PEFP) aims to develop a superconducting RF linac to accelerate a proton beam above 80 MeV at 700 MHz. The preliminary design of a low-beta cryomodule has been completed. A low-beta (β=0.42) cavity, a higher-mode coupler and a fundamental power coupler (FPC) for the PEFP cavities have also been designed. A FPC baking system and high power RF conditioning system are under construction. A helium vesel made of stainless steel has been designed. A new tuner has also been designed. Two prototype copper cavities have been produced and tested. The HOM coupler has been measured on the copper cavities. A cryostat for a SRF cavity vertical testing has been designed.  
MOPP113 PEFP Dumbbell Frequency and Length Tuning of a Low-beta SRF Cavity 823
 
  • S. An, Y.-S. Cho, C. Gao, Y. M. Li, Y. Z. Tang
    KAERI, Daejon
  • L. Zhang
    Department of Mechanics, Chang’an University, Daejon
 
  Based on present technology, a dumbbell fabrication is a necessary mid-process for a cavity manufacting process. A dumbbell with a right length and frequency is necessary to build up a desired cavity. In order to obtain the exact frequencies of each individual half cell of a PEFP dumbbell, a new and confirmed measurement method has been established. In this paper, the dumbbell frequency measurement method and the frequency and length tuning practices for a PEFP low-beta cavity have been described.  
MOPP137 MultiPac 2.1 - Multipacting Simulation Package with a 2D FEM Field Solver for a Microsoft Windows System 880
 
  • Y. M. Li, S. An, Y.-S. Cho, L. Zhang
    KAERI, Daejon
  • P. Ylä-Oijala
    Helsinki University of Technology, Helsinki
 
  MultiPac 2.1 is a multipacting simulation package for analyzing electron multipacting in axisymmetric RF structures with TM0nl mode, such as RF cavities, coaxial input couplers and ceramic windows. The original package was written by P. Ylä-Oijala*, and works with MATLAB 5.0 or 6.0 on Linux operating system. In order to use this code easily for Microsoft Windows customers, we have transferred the MultiPac 2.1 from the Linux system to the Microsoft Windows system. The revised MultiPac can work with Microsoft Windows MatLab 6.0 or later editions smoothly. In this paper, the installation and operation of the Windows MutiPac 2.1 have been introduced.

*This work was supported by the 21C Frontier R&D program in Ministry of Science and Technology of the Korean Government.

 
MOPP166 Control System for a PEFP FPC Baking System 940
 
  • L. Zhang, S. An, Y.-S. Cho, Y. M. Li, Y. Z. Tang
    KAERI, Daejon
 
  In order to bake PEFP Fundamental Power Couplers (FPC) before their RF conditioning, a PEFP baking system has been designed. A control system for the baking system has been completed by using the Labview 8.2 and A-B SLC-500 PLC. In this paper, the server and client communication technology based on OLE for a Process Control (OPC) and a Labview 8.2 Datalogging and Supervisory Control (DSC) Module are described. The program for the SLC-500 PLC with four I/O modules has been written. The mechanical design and control process are described.