A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Laxdal, R. E.

Paper Title Page
WEPP090 Accelerator Design for a 1/2 MW Electron Linac for Rare Isotope Beam Production 2728
 
  • S. R. Koscielniak, F. Ames, I. V. Bylinskii, R. E. Laxdal, M. Marchetto, A. K. Mitra, I. Sekachev, V. A. Verzilov
    TRIUMF, Vancouver
 
  TRIUMF, in collaboration with university partners, proposes to construct a megawatt-class electron linear accelerator (linac) as a photo-fission driver for radioactive ion beam production (RIB) for nuclear astrophysics studies and materials science. The design strategy, including upgrade path, for this cost-effective facility is elaborated. The 50 MeV, 10 mA, c.w. linac is based on TESLA/ILC super-conducting radio-frequency (SRF) technology at 1.3 GHz and 2K; and consists of an electron gun, buncher and capture sections, followed by 10 MeV and 40 MeV cryomodules containing one and four 9-cell cavities, respectively. Preliminary results from PARMELA beam dynamics simulations are presented. C. W. operation leads to challenges of large cryogenic heat load, input coupler power handling and beam loss mitigation similar to those encountered in ERL-based light sources. Unlike those sources there is no need for high beam brilliance, and a triode thermionic gun modulated at 1.3 GHz is employed; nor are short bunches required, and so the HOM excitation is modest. Many of the major sub-system components have been identified and where possible existing designs will be adopted.  
THPP031 Upgrade of the ISAC DTL Tuning Procedure at TRIUMF 3440
 
  • M. Marchetto, J. Berring, R. E. Laxdal
    TRIUMF, Vancouver
 
  The TRIUMF ISAC facility has two variable energy heavy ion linacs as post accelerators for radioactive ion beams. The ISAC I linac is a warm IH-DTL with five accelerating tanks and three bunchers, the ISAC II one uses twenty independently phased superconducting cavities. The first linac operates between 150 keV/u and 1.8 MeV/u; the second boosts the 1.5 MeV/u injected beam by 20 MV. The DTL is tuned based on the energy beam profile given by an analysing magnet. The SC linac is tuned on energy and time profiles with a diagnostic based on a gold foil scattering ions to a silicon detector (SID). The SID requires lower beam intensity. Furthermore the tuning time is reduced and streamlined by means of a MATLAB graphical user interface (GUI). This GUI uses a simple cosine model to characterize the energy gain versus RF phase of each cavity. Based on this we have pursued a new tuning procedure for the DTL using a gold foil/SID diagnostic. The more complex RF structures of the DTL require measurements and beam dynamics simulations (with LANA code) to produce a model for a dedicated GUI. In the paper we describe the two existing tuning methods and present new DTL procedure and interface.  
THPP060 Simultaneous Extraction of Two Stable Beams for ISAC 3503
 
  • G. Dutto, R. A. Baartman, P. G. Bricault, I. V. Bylinskii, A. Hurst, R. E. Laxdal, Y.-N. Rao, L. W. Root, P. Schmor, G. M. Stinson
    TRIUMF, Vancouver
  • J. M. Schippers
    PSI, Villigen
 
  The TRIUMF cyclotron was originally conceived for several proton beams extracted simultaneously at different energies. Recent operation includes a 500 MeV beam up to150 μA for meson users, a 500 MeV beam up to 80 μA for rare isotope production, and a 100 MeV beam up to 70μA for medical isotopes. The extraction of an additional high intensity proton beam, at an energy between 450 and 500 MeV for ISAC has now been given priority. With the rare ions produced from the existing and future primary beam lines, we will be able to operate two of the existing experimental areas simultaneously. Upgrading the cyclotron for higher intensity is in progress. A necessary goal for ISAC is the extraction of both primary proton beams with stability better than 1% to allow the highest possible temperatures to be reliably maintained at the ion production targets. A successful solution implemented for the existing primary ISAC beam has been simulated to be adaptable for both primary beams, given the particular angular separation between the two strippers in the cyclotron. Progress on intensity and stability studies and the layout of the extraction system will be presented.  
THPP115 The Proposed ISAC-III Upgrade at TRIUMF 3635
 
  • R. E. Laxdal, F. Ames, R. A. Baartman, P. G. Bricault, S. R. Koscielniak, M. Marchetto, M. Trinczek, F. Yan
    TRIUMF, Vancouver
 
  Presently, the ISAC facility produces radioactive ions by a single driver beam of up to 100microA of 500MeV protons (50kW) impinging on either of two production targets which are configured such that only one radioactive ion beam (RIB) is available for use at any one time; and the experimental hours are shared between several facilities in the low energy and two accelerated beam experimental areas. The ISAC-III upgrade is proposed to increase the number of RIBs simultaneously available to three. The upgrade involves the addition of a high power electron linac, 50MeV/10mA, that would irradiate one of two new independent targets and produce RIBs through photo-fission. A second beamline from the existing cyclotron would deliver an additional 500MeV 200microA proton beam to the new target area to irradiate the second target producing the third simultaneous beam. The proposal includes an additional post-accelerator front-end to augment the existing infrastructure to provide the capability of accelerating two of the RIBs simultaneously. The paper summarizes the upgrade and discusses design choices to optimize nuclide availability across the three experimental areas.