A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kuehnel, K.-U.

Paper Title Page
MOPC116 On the Possibility of Realizing Shortest Bunches in Low-energy Storage Rings 334
 
  • A. I. Papash, K.-U. Kuehnel, C. P. Welsch
    MPI-K, Heidelberg
  • A. A. Alzeanidi, M. O.A. El Ghazaly
    KACST, Riyadh
  • A. I. Papash
    JINR, Dubna, Moscow Region
 
  For some very interesting experiments in future low-energy storage rings it is highly desirable to realize ultra-short bunches in the nanosecond regime. These bunches could then be used for collision studies with atomic or molecular gas jet targets where the time structure of the bunches would be used as a trigger for the experiment. Thus, the control of the longitudinal time structure of the stored beam is of central importance since it directly determines the resolution of the envisaged experiments. Since many years, it has been a significant challenge for the storage ring accelerator-physics community to develop techniques to reduce the duration of bunches. Up to now, all methods that have been developed go along with various difficulties, which can include reduced stored-beam lifetimes. Thus, novel and innovative concepts for the manipulation and control of the longitudinal beam structure have to be developed. In this paper, novel approaches to realize shortest bunches in storage rings are presented.  
TUPC055 Operating MCP Detectors at Cryogenic Temperatures 1179
 
  • K.-U. Kuehnel, C. D. Schroeter, J. Ullrich
    MPI-K, Heidelberg
 
  At present, a low energy electrostatic storage ring operating at cryogenic temperatures down to 2 K is being build up at the MPI-K in Heidelberg. Both, beam diagnostics and experiments rely on the use of position sensitive micro-channel plate (MCP) detectors equipped with phosphor screens or delay line anodes. Since little is known about the performance of these detector types in a cryogenic environment a test chamber was built to investigate their properties. A delay line MCP detector was successfully tested at temperatures as low as 25 K. In this contribution the detailed results of theses tests as well as possible applications of the detector are presented.  
TUPC056 A Novel Beam Profile Monitor Based on a Supersonic Gas Jet 1182
 
  • K.-U. Kuehnel, M. Putignano, C. D. Schroeter, J. Ullrich, C. P. Welsch
    MPI-K, Heidelberg
 
  At very low residual gas pressure below 10-12 mbar, as foreseen in future low-energy storage rings currently under development at the MPI-K and FAIR, conventional residual gas beam profile monitors cease to work with reasonable count rates. One possible way to overcome this restriction is the use of a supersonic gas jet as a profile monitor. Such a jet could be shaped as a thin curtain, thus providing a uniform target with a variable target density extended over the whole beam. A possible setup of such a device taking into account vacuum considerations, expected count rates and an envisioned detection scheme are presented in this contribution.  
THPP016 Preliminary Design of a Highly-flexible Extraction Scheme for the USR 3407
 
  • Ph. Schmid, K.-U. Kuehnel, C. P. Welsch
    MPI-K, Heidelberg
  • A. I. Papash
    JINR, Dubna, Moscow Region
 
  In the future Facility for Low-energy Antiproton and Ion Research (FLAIR) at GSI, the Ultra-low energy electrostatic Storage Ring (USR) will provide cooled beams of antiprotons and possibly also highly charged ions down to energies of only 20 keV/q. Beams with small momentum spread and low emittance will enable a wide range of hitherto impossible experiments. The large variety of planned experiments requires a highly flexible longitudinal time structure of the extracted bunches, ranging from ultra-short pulses in the nanosecond regime to quasi DC beams. In this contribution, a preliminary design of the extraction scheme is presented. Furthermore, possible solutions for the compensation of effects from the extraction region on the very-low energy beam are shown, including results from beam transport calculations.