A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kuan, C. K.

Paper Title Page
TUPC054 Pulse-by-pulse Photon Beam Monitor with Microstripline Structure in NSRRC 1176
 
  • C. K. Kuan, C. L. Chen, J.-R. Chen, G.-Y. Hsiung, I. C. Sheng, Z.-D. Tsai, D.-J. Wang
    NSRRC, Hsinchu
  • H. Aoyagi, H. Kitamura, S. Takahashi
    JASRI/SPring-8, Hyogo-ken
 
  In order to diagnostic pulse-by-pulse beam movement of photon beam, NSRRC(Taiwan) and SPring-8 (Japan) have worked together to develop a front end beam monitor with microstripline structure, which is designed to have specific impedance of 50 ohm. The detector head is composed of a metal line (copper), ceramic plates (aluminum nitride) and a cooling base (copper tungsten). The metal line functions as a photocathode. The metal line is directly connected to SMA feed-through connectors to have fast response time. The detector head has been fabricated in SPring-8, and mounted on the monitor chamber and installed in NSRRC Superconducting Wiggler (SW) front end. The beam monitor can be used to examine not only pulse-by-pulse photon beam, but also the storage ring intensity and the pulse timing. Unique feature of the monitor is to produce unipolar short pulses. The design, fabrication and the measurement will be presented in this paper.  
TUPP162 High Heat Load Components in TPS Front Ends 1890
 
  • A. Sheng, J.-R. Chen, C. K. Kuan, Z.-D. Tsai
    NSRRC, Hsinchu
 
  National Synchrotron Radiation Research Center (NSRRC) will build a new synchrotron accelerator (TPS, Taiwan Photon Source) with a great heat-load power. Various IDs have been proposed. For instance, at 3.3 GeV, 350 mA, superconductivity wiggler SW4.8 may generate 5.8mrad wide, 57 kW/mrad2 power whereas undulator CU1.8 will be 0.7 mrad, 148 kW/mrad2. The function of the fixed mask in TPS front ends not only to protect the downstream vacuum from being hit by the radiation during miss-steering, but also shadow the unwanted power. More than one fixed masks are introduced in some high heat load front ends. High conductivity, high thermomechaical strength GlidCop® is used; design and thermomechanical analysis is also presented in this paper.  
WEPC058 Operational Performance of the Taiwan Light Source 2124
 
  • Ch. Wang, H.-P. Chang, J.-C. Chang, J.-R. Chen, F.-T. Chung, F. Z. Hsiao, G.-Y. Hsiung, K. T. Hsu, C. K. Kuan, C.-C. Kuo, K. S. Liang, K.-K. Lin, Y.-H. Lin, K.-B. Liu, Y.-C. Liu, G.-H. Luo, R. J. Sheu, D.-J. Wang, M.-S. Yeh
    NSRRC, Hsinchu
 
  The Taiwan light source (TLS) is a 1.5 GeV third generation light source at the National Synchrotron Radiation Research Center (NSRRC) in Taiwan. It has been routinely operated since its opening in 1993. Several major machine upgrade projects have been undertaken and successfully completed in last 5 years, including implementing of digital bunch-by-bunch feedbacks, superconducting accelerating RF cavity, top-up mode injection, etc. The light source now moves forward to its era of mature operation. It delivers more than 5000 hours user time in 2007 with an up-time of more than 98% and a mean time between failures better than 80 hours. Here, we review its annual operational performance with detailed statistics and discuss the possible improvement directions of machine performance.