A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kolb, P.

Paper Title Page
MOPP111 Beam Tests with the MAFF IH-RFQ at the IAP-Frankfurt 817
 
  • H. Z. Zimmermann, D. Habs
    LMU, München
  • A. Bechtold, P. Kolb, A. Schempp
    IAP, Frankfurt am Main
 
  The IH-type RFQ for the MAFF project at the LMU Munich is integrated into a test bench at the IAP in Frankfurt. The existing IH-RFQ set-up is the second after the HIS at GSI and the first one that can be directly compared to a very similar 4-rod type machine, the REX-ISOLDE RFQ at CERN. The test bench consists of an ionsource, an electrostatic quadrupole lens system with implemented steerers, and several beam diagnostic like a two dimensional emittance scanner, bending magnet and a fast faraday cup. Experimental results will be presented. These tests accompanied with theoretical investigations will be done with special respect to the applicability of such normal conducting RFQ accelerators to the EURISOL post accelerator.  
THPP098 Simulations on a Beam Transport System for the Frankfurt Funneling Experiment 3593
 
  • P. Kolb, N. Mueller, A. Schempp
    IAP, Frankfurt am Main
 
  The goal of the Frankfurt Funneling Experiment is to multiply beam currents by mergeing two low energy ion beams. Our setup consists of two ion sources, a two beam RFQ accelerator, a multigap deflector and a beam diagnostics. Current work is the design of a new beam transport between RFQ accelerator and deflector and first simulations will be presented.  
THPP100 Development of New Ion Sources for the Frankfurt Funneling Experiment 3596
 
  • N. Mueller, U. Bartz, P. Kolb, A. Schempp
    IAP, Frankfurt am Main
 
  Funneling is a method to increase beam currents in several stages. The Frankfurt Funneling Experiment is a prototype of such a stage. The experimental setup consists of two ion sources with electrostatic lens systems, a Two-Beam RFQ accelerator, a funneling deflector and a beam diagnostic system. The two beams are bunched and accelerated in a Two-Beam RFQ and the last parts of the RFQ electrodes achieve a 3d focus at the crossing point of the two beam axis. A funneling deflector combines the bunches to a common beam axis. The newly optimized ion sources are adapted to the front end bunching section. First results and measurements will be presented.