A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kobal, M.

Paper Title Page
TUPC050 A Complete Solution for Beam Loss Monitoring 1170
 
  • M. Kobal, J. Dedic, R. Stefanic
    Cosylab, Ljubljana
  • J. F. Bergoz
    BERGOZ Instrumentation, Saint Genis Pouilly
 
  In particle accelerator facilities knowing the beam loss is crucial for the machine to be running at optimal efficiency. Beam loss can be monitored on different time scales. Time scale of seconds is used at normal operation to detect any irregularities such as changes in the beta function or vacuum drop. Time scale of 1 ms is used to optimize injection, and 1 μs timescale in case of severe problems when the beam does not live for more than a couple of turns. The presented beam loss system (microIOC-BLM) uses Bergoz BLM sensors, Beam loss Signal Conditioner (BSC) for data acquisition and microIOC-CosyIcon as the central processing unit. The system is cost effective, portable and can be expanded with additional measuring points. Selectable counting interval from 100 μs to 10 s covers a large part of the required time scales. The minimum and maximum count rates are limited by the sensor between 1/s to 10 M./s. Trigger and gate signals are supported as is summing over a number of measurements.  
THPP146 High-voltage Power Supply Distribution System 3708
 
  • M. Kobal, D. Golob, M. Plesko, A. Podborsek
    Cosylab, Ljubljana
  • T. Kusterle, M. Pelko
    JSI, Ljubljana
 
  High-voltage splitters enable connecting a larger number of ion-pumps to a single ion-pump controller. In particle accelerator facilities where relatively small pumps are used, using high-voltage splitters can significantly reduce costs and rack space. By using simple high-voltage splitters some functionality of the conrollers can be lost. The presented high-volage splitter is one of the most advanced devices on the market. It measures current going to every pump in the range 100 pA to 100 mA with an accuracy of 5%. Fully configurable tables are used to convert the measured current to the pressure at the pump. Current measurements are also used to monitor cable and ion-pump aging which results in linear increase of current with time. Hardware interlocks are used to disconnect individual pumps in case of poor vacuum to avoid pump damage. The limits can be set by the user, who can also set the number of active pumps. EPICS support was developed for the device with graphical user interfaces writen in EDM, java and WebCA. Since the presented device covers or exceeds a lot of the ion-pump controller functionality, simpler controlers can be used.