A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kitegi, C. A.

Paper Title Page
WEPC105 Construction of a Cryogenic Permanent Magnet Undulator at ESRF 2243
 
  • J. Chavanne, M. Hahn, R. Kersevan, C. A. Kitegi, C. Penel, F. Revol
    ESRF, Grenoble
 
  A cryogenic permanent magnet undulator (CPMU) has been constructed at ESRF. The device is a full scale in-vacuum undulator with a magnetic length of 2 metres and a period of 18 mm. This prototype is still compatible with an operation at room temperature, it has been mainly used to investigate the technological issues connected to the operation at low temperature. An important effort has been dedicated to the construction of a complete measuring bench operated in-vacuum with the undulator at cryogenic temperatures around 150 K. The bench includes a stretched wire system for field integral measurement and a local field measurement assembly suitable for the accurate characterization of the optical phase error along the undulator. The main results of the magnetic measurements will be presented , they confirm the simulations performed with RADIA using NdFeB permanent magnet material models at low temperature. The cryogenic system used to cool the undulator is based on a reliable liquid nitrogen closed loop. The heat budget of the device will be discussed. The prototype has been installed on the ESRF ring in December 2007. The first results of operation will be presented.  
WEPC098 Development of Cryogenic Undulator CPMU at SOLEIL 2225
 
  • C. Benabderrahmane, P. Berteaud, N. Béchu, M.-E. Couprie, J.-M. Filhol, C. Herbeaux, C. A. Kitegi, J. L. Marlats, A. Mary, K. Tavakoli
    SOLEIL, Gif-sur-Yvette
 
  On SOLEIL at 2.75 GeV, producing hard X rays requires short period and small gap in-vacuum hybrid permanent magnet undulators. Besides, higher achieved peak magnetic field can be while operating at cryogenic temperature Tc (around 140 K). When cooling down the permanent magnets, the remanence Br increases down to a certain temperature at which the process is limited by the appearance of the Spin Reorientation Transition phenomenon. The coercivity is also increased at Tc which improves significantly the resistance to radiation. R&D studies, aims at replacing SmCo by NdFeB permanent magnets whose Br of 1.4 T, could enable to increase at least by 30% the peak magnetic field at Tc. Unfortunately such magnet grade can’t be heated to high temperature without degrading the magnetic properties, which limits the residual pressure that can be achieved. Temperature gradient and mechanical deformation are also technical issues. Different permanent magnet grades at Tc are characterized. Studies are also carried out on a small assembly of four periods. Residual pressures obtained with or without partial baking on standard U20 in-vacuum undulators are compared.