A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kim, Y.

Paper Title Page
MOPC015 Start-to-End Simulations of the PSI 250 MeV Injector Test Facility 100
 
  • Y. Kim, A. Adelmann, R. J. Bakker, M. Dehler, R. Ganter, T. Garvey, A. Oppelt, M. Pedrozzi, J.-Y. Raguin, L. Rivkin, A. Streun, F. Stulle, A. F. Wrulich
    PSI, Villigen
 
  From 2003, PSI has been investigating the advanced Low Emittance Gun (LEG) based 6 GeV PSI XFEL facility to supply coherent, ultra-bright, and ultra-fast XFEL photon beams covering from 0.1 nm to 10 nm. To build whole facility within a 800 m space, required beam parameters in front of undulators are challenging. For the first two FEL beamlines (FEL 1 and FEL 2), the required normalized slice emittance, slice energy spread, and peak current are about 0.2 mm.mrd, 0.6 MeV, and 1.5 kA, respectively. However, the required beam parameters for the third FEL beamline (FEL 3) covering 1 nm to 10 nm are somewhat flexible. Therefore PSI has been developing two different gun technologies. The 1 MV high gradient pulsed diode and field emission based advanced LEG will be used for first two FEL beamlines, while the CTF3 gun type V based conventional RF photoinjector will be used for the third FEL beamline. To test those two injector technologies, a dedicated 250 MeV injector test facility will be constructed at PSI from 2008. In this paper, we describe beam dynamics in two accelerator optimizations of the CTF3 RF gun based 250 MeV injector test facility for the PSI XFEL project.  
MOPC045 First Measurement Results of the PSI 500kV Low Emittance Electron Source 169
 
  • M. Pedrozzi, Å. Andersson, R. J. Bakker, R. Ganter, C. Gough, C. P. Hauri, R. Ischebeck, S. Ivkovic, Y. Kim, F. Le Pimpec, K. B. Li, P. Ming, A. Oppelt, M. Paraliev, T. Schietinger, V. Schlott, B. Steffen, A. F. Wrulich
    PSI, Villigen
  • S. C. Leemann
    MAX-lab, Lund
 
  The Paul Scherrer Insitute (PSI) is presently developing a low emittance electron source for the PSI-XFEL project. The target beam parameters at the source are I=5.5 A, Q=0.2 nC and a slice emittance below 0.2 mm.mrad. The gun concept consists of a high gradient "diode“ stage followed by a two-frequency two-cell cavity to allow fine tuning of the longitudinal phase space. This paper reports on the first experimental results obtained with the PSI 500 kV test stand. The facility consists of a 500 kV diode stage followed by a diagnostic beam line including an emittance monitor. An air-core transformer based high voltage pulser is capable of delivering a pulse of 250 ns FWHM with amplitude up to 500 kV. The diode gap between two mirror polished electrodes is adjustable to allow systematic gradient studies. The electrons are produced by a 266nm UV laser delivering 4μJoules on the Cu-cathode.  
THPC004 Chromatic and Wakefield Effects in PSI-XFEL Linac 2978
 
  • B. Grigoryan, G. A. Amatuni, V. M. Tsakanov
    CANDLE, Yerevan
  • R. J. Bakker, Y. Kim, M. Pedrozzi, J.-Y. Raguin
    PSI, Villigen
 
  Detailed knowledge about the wakefield and chromatic effects on electron beam emittance is an important issue to preserve the natural emittance of the beam in linear accelerators for FEL. The study of these two effects for beam and accelerator components imperfections in PSI-XFEL S-Band linear accelerator is presented. Emittance dilution caused by the beam coherent oscillations, accelerating section and quadrupole misalignments is analysed. The residual chromatic emittance dilution of the corrected trajectory is evaluated.