A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Katayama, T.

Paper Title Page
THPP055 Stochastic Cooling Developments for the HESR at FAIR 3491
 
  • H. Stockhorst, R. Maier, D. Prasuhn, R. Stassen
    FZJ, Jülich
  • T. Katayama
    CNS, Saitama
  • L. Thorndahl
    CERN, Geneva
 
  The High-Energy Storage Ring (HESR) of the future International Facility for Antiproton and Ion Research (FAIR) at the GSI in Darmstadt will be built as an anti-proton cooler ring in the momentum range from 1.5 to 15 GeV/c. An important and challenging feature of the new facility is the combination of phase space cooled beams with internal targets. In addition to electron cooling transverse and longitudinal stochastic cooling are envisaged to accomplish these goals. A detailed numerical analysis of the Fokker-Planck equation for longitudinal filter cooling including an internal target and intrabeam scattering has been carried out to demonstrate the stochastic cooling capability in the newly designed normal conducting ring lattice of the HESR. Theoretical predictions have been compared to experimental cooling results with internal targets at the COSY facility. Recent developments for the HESR stochastic cooling equipment will be discussed. The design of new high sensitive printed loop couplers and ring slot couplers for the (2-4) GHz range as well as prototype measurements with protons in the COSY accelerator will be presented.  
THPP048 Experimental Demonstration of Longitudinal Ion Beam Accumulation with Electron Cooling 3470
 
  • C. Dimopoulou, B. Franzke, T. Katayama, F. Nolden, G. Schreiber, M. Steck
    GSI, Darmstadt
  • D. Möhl
    CERN, Geneva
 
  Recently, two longitudinal beam compression schemes have been successfully tested in the Experimental Storage Ring (ESR) at GSI with a beam of bare Ar ions at 65 MeV/u injected from the ion synchrotron SIS18. The first employs Barrier Bucket pulses, the second makes use of multiple injections around the unstable fixed point of a sinusoidal RF bucket at h=1. In both cases continuous electron cooling maintains the stack and merges it with the freshly injected bunch *. Using the beam diagnostic devices in the ring both stacking processes were demonstrated under the same conditions. The dependence of the accumulation performance on the available rf potential, the electron cooling strength as well as on the synchronization conditions between injection kicker pulse and rf wave was investigated. These experimental results provide the proof of principle for the planned fast stacking of Rare Isotope Beams aiming at high luminosities in the New Experimental Storage Ring ** of the FAIR project ***.

* C. Dimopoulou et al., JACoW Proceedings of COOL07, Bad Kreuznach,2007.
** C. Dimopoulou et al., PRST-AB 10 (2007) 020101.
*** FAIR Baseline Technical Report,www.gsi.de/fair/.

 
THPP051 Stochastic Cooling in the Framework of the FAIR Project at GSI 3479
 
  • F. Nolden, A. Dolinskii, B. Franzke, U. Jandewerth, T. Katayama, C. Peschke, P. Petri, M. Steck
    GSI, Darmstadt
  • D. Möhl
    CERN, Geneva
 
  Stochastic cooling at FAIR will be one of the instruments to get cooled beams of rare isotopes and antiprotons for high resolution experiments. Stochastic cooling systems will be installed in the CR and RESR storage rings. The Collector Ring CR is a dedicated storage ring for the first step cooling of antiproton beams (3 GeV or β=0.97) produced at the antiproton production target, and of radioactive beams (740 MeV/u or β=0.83) prepared in the Super Fragment Separator. The pick-up and kicker systems have designs which allow very efficient cooling for both particle velocities. There will be different ring optical settings for optimum cooling of antiprotons or rare isotopes. Whereas the next cooling step for rare isotopes will be electron cooling, antiprotons will be accumulated in the RESR using a similar accumulation scheme which was formerly applied at the AA at CERN. The paper presents the CR and RESR system layouts and new hardware developments.