A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kanazawa, M.

Paper Title Page
TUPP006 Beam Test with a New Control System of Acceleration in HIMAC 1538
 
  • M. Kanazawa
    NIRS, Chiba-shi
  • K. Maeda
    Toshiba Corporation, Tokyo
  • K. Watanabe
    Chiba University, Graduate School of Science and Technology, Chiba
 
  In the present acceleration system in HIMAC, acceleration frequency of a direct digital synthesizer is controlled with B-clock pulses of B+ and B- signals that correspond to 0.2 Gauss increment and decrement of dipole magnetic field. In the tested new control system, we will use only clock pulse whose clock rate is locked to the power line frequency. With this simple system, it is easy to build up the acceleration control system for multiple flat-top pattern. This pattern operation is expexted to use in the next irradiation system of spot-scanning in HIMAC. In this presentation, the used system and its beam tests will be presented.  
TUPP125 New Heavy-ion Cancer Treatment Facility at HIMAC 1818
 
  • K. Noda, T. Furukawa, T. Inaniwa, Y. Iwata, T. Kanai, M. Kanazawa, S. Minohara, S. Mori, T. Murakami, S. Sato, T. Shirai, E. Takada, Y. Takei, M. Torikoshi
    NIRS, Chiba-shi
 
  The first clinical trial of cancer treatment with carbon beams generated from the HIMAC was conducted in June 1994. Based on more than ten years of experience with HIMAC, we have proposed a new treatment facility for the purpose of further development of the heavy-ion cancer therapy with HIMAC. This facility, which is connected with the HIMAC synchrotron, consists of three treatment rooms: two rooms equipped with horizontal and vertical beam-delivery systems and one room with a rotating gantry. In both the fixed beam-delivery and rotating gantry systems, a 3D beam-scanning method is employed with gated irradiation with patient’s respiration in order to increase the treatment accuracy. Since the beam control for the size, the position and the time structure plays an essential role in the 3D beam scanning with the irradiation gated with respiration, the R&D study has been carried out with the HIMAC synchrotron since 2006. At December 2007, the Japanese government approved this project. We will report the design and R&D studies toward the construction of the new treatment facility.