A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kadi, Y.

Paper Title Page
MOPC090 Driver Beam-led EURISOL Target Design Constraints 271
 
  • E. Noah, R. Catherall, Y. Kadi, C. Kharoua, J. Lettry, T. Stora
    CERN, Geneva
 
  The EURISOL (European Isotope Separation Online) Design Study is addressing new high power target design challenges. A three-step method* was proposed to split the high power linac proton driver beam into one H- branch for the 4 MW mercury target that produces radioactive ion beams (RIB) via spallation neutron-induced fission in a secondary actinide target and three 100 kW H+ branches for the direct targets producing RIBs via fragmentation and spallation reactions. This scheme minimises transient thermo-mechanical stresses on targets and preserves the cw nature of the driver beam in the four branches. The heat load for oxides, carbides, refractory metal foils and liquid metals is driven by the incident proton driver beam while for actinides, exothermic fission reactions are an additional contribution. This paper discusses the constraints that are specific to each class of material and the target design strategies. An emphasis is placed on the modern engineering numerical tools and experimental methods used to validate the target designs.

*A. Facco, R. Paparella, D. Berkovits, Isao Yamane, "Splitting of high power, cw proton beams", Physical Review Special Topics - Accelerators and Beams (2007).

 
WEPP009 Collimator Integration and Installation Example of One Object to be Installed in the LHC 2542
 
  • K. Foraz, O. Aberle, R. W. Assmann, C. Bertone, R. Chamizo, S. Chemli, J.-P. Corso, F. Delsaux, J. L. Grenard, J. M. Jimenez, Y. Kadi, K. Kershaw, M. Lazzaroni, R. Perret, Th. Weiler
    CERN, Geneva
  • J. Coupard
    IN2P3-CNRS, Orsay
 
  The collimation system is a vital part of the LHC project, protecting the accelerator against unavoidable regular and irregular beam loss. About 80 collimators will be installed in the machine before the first run. Two insertion regions are dedicated to collimation and these regions will be among the most radioactive in the LHC. The space available in the collimation regions is very restricted. It was therefore important to ensure that the 3-D integration of these areas of the LHC tunnel would allow straightforward installation of collimators and also exchange of collimators under the remote handling constraints imposed by high radiation levels. The paper describes the 3-D integration studies and verifications of the collimation regions combining the restricted space available, the dimensions of the different types of collimators and the space needed for transport and handling. The paper explains how installation has been planned and carried out taking into account the handling system and component availability.