A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ichikawa, M.

Paper Title Page
MOPC146 Development of Piezoelectric Pulse Gas Valve for Small ECR Ion Source 418
 
  • M. Ichikawa, H. Fujisawa, Y. Iwashita, Y. Tajima, H. Tongu, M. Yamada
    Kyoto ICR, Uji, Kyoto
 
  In a conventional ion source, the source gas is continuously fed even in its pulse operation. This requires a high load to a vacuum pumping system. The situation is prominent when the gas load is relatively higher in such a high current ion source. In order to improve this situation, we try to supply gas only when it is needed by synchronizing the gas feed with the extraction of the ion beam. We have developed a small pulse-gas-valve using a commercially available disc-shape piezoelectric element. This valve is small enough to be mounted in our ECR ion source and is capable of very fast open-and-close operation of an order of kHz repetition. A small ECR ion source with this valve will be presented.  
MOPP015 Continuously Adjustable Permanent Magnet Quadrupole for a Final Focus 583
 
  • T. Sugimoto, M. Ichikawa, Y. Iwashita, M. Yamada
    Kyoto ICR, Uji, Kyoto
  • M. Kumada
    NIRS, Chiba-shi
  • S. Kuroda, T. Tauchi
    KEK, Ibaraki
 
  A permanent magnet quadrupole with continuous strength adjustability has been fabricated. It has a five-ring-singlet structure, which was proposed by R. L.Gluckstern. Its small overall diameter allows an outgoing beamline to pass closeby. Since the permanent magnet pieces do not have any vibration source in themselves, this magnet could be used as a quadrupole in a final focus doublet. Such a quadrupole system is described.  
WEPC164 Development of Modulating Permanent Magnet Sextupole Lens for Focusing of Cold Neutrons 2392
 
  • M. Yamada, M. Ichikawa, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • T. Ino, S. Muto, H. M. Shimizu
    KEK, Ibaraki
 
  A modulating permanent magnet sextupole lens that can focus pulsed cold neutrons is under development. It is based on the extended Halbach configuration to generate stronger magnetic field. In order to adjust the strength, the magnet is divided into two co-axial nested rings, where the inner ring is fixed and the outer ring can be rotated. Synchronizing the period of the modulation with that of pulsed neutron beam suppress the chromatic aberration. We have fabricated a half-scale model and studied the strength, the torque and the temperature rise caused by eddy current. Now we are developing the full-scale model improving such problems. These two scale models of magnet are described.