A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hwang, C.-S.

Paper Title Page
WEPC113 Heat Load Issues of Superconducting Undulator Operated at TPS Storage Ring 2267
 
  • C.-S. Hwang, J. C. Jan, P. H. Lin
    NSRRC, Hsinchu
 
  The superconducting undulator with periodic length of 1.5 cm and magnet gap of 5.6 mm has been studied. The magnetic flux density of 1.4 T has been achieved. However, the heat loads from image current of the electron in the storage ring and the synchrotron radiation from bending magnet are the critical issues. The calculated power from the image current and the synchrotron radiation of bending magnet are about 3.5 W/m and 1.7 W, respectively. The superconducting undulator will be operated at the 3 GeV TPS storage ring that the operation current and the magnet flux density of dipole magnet is 400 mA and 1.19 T, respectively. The superconducting RF cavity will be installed in the TPS such that the bunch length is only 2.8 mm. Hence, the superconducting Landau cavity is necessary to extend the bunch length for reducing the heat load on the beam duct. In addition, some strategies are needed to be studied to avoid the synchrotron radiation heating on the 4.2 K vacuum chamber. The soft-end dipole design and the chicane mechanism are studied to solve the issue herein.  
WEPC114 Improved Winding of Superconducting Undulator and Measurement of Quenching Tolerance 2270
 
  • J. C. Jan, C.-H. Chang, C.-S. Hwang, F.-Y. Lin
    NSRRC, Hsinchu
 
  The superconducting (SC) wire windings of the mini-pole superconducting undulator at National Synchrotron Radiation Research Center (NSRRC) have an improved performance. A precise measurement of the magnetic field was undertaken to examine the quality of the wire winding. We improved the insulation between wires and the iron pole to avoid SC wire degradation when the coil was trained up to high current. A Teflon coating (layer thickness 0.035-0.045 mm) on the iron pole is capable of providing insulation to 0.5 kV. We pasted extra Teflon tape (thickness 0.12 mm) on the coating layer; this Teflon tape serves as a buffer that avoids the SC wires scraping the Teflon coating layer during adjustment of the position of the SC wire during winding. A quenching experiment was also performed to detect the heat tolerance of the SC wires during extra heating of the beam duct; a heating tape (Ni80Cr20) simulated the heating of the beam duct by synchrotron radiation. The SC wires and heater are separated by the stainless steel (SS) beam duct (thickness 0.3 mm) and an epoxy layer (thickness 0.1 mm). This result is an important issue in cryostat design.  
WEPC142 Design of Pulsed Magnets for the Taiwan Photon Source 2341
 
  • C.-H. Chang, C. K. Chan, J.-R. Chen, C.-S. Fann, M.-H. Huang, C.-S. Hwang, F.-Y. Lin, Y.-H. Liu, C.-S. Yang
    NSRRC, Hsinchu
 
  A new Taiwan Photon source requires a high stability pulsed magnets for the top-up mode injection operation. We present a preliminary design of the pulsed magnets used for injection into the 3 GeV storage ring. A 0.6 m long kicker magnet prototype is fabricated for testing the field performance. The field testing results are described in this work. The septum magnet with a 0.4 mm thickness stainless steel vacuum chamber is real tested at 3 Hz operation. The field performance, the stray fields and the eddy current effect are presented in this paper.  
WEPC154 Design and Fabrication of Multipole Corrector Magnet 2368
 
  • F.-Y. Lin, C.-H. Chang, H.-H. Chen, C.-S. Hwang, C. Y. Kuo
    NSRRC, Hsinchu
 
  The Taiwan Light Source (TLS) had started to operate in top-up mode injection since October 2005. Meanwhile, the Elliptically Polarized Undulator (EPU5.6) was operated very well in the decay mode operation. However, the partial beam loss had occurred when the top-up injection was executed at magnet gap and magnet array phase are fixed at the minimum gap and π(vertical polarization mode), respectively. In order to solve the partial beam loss, we design a new multipole corrector magnet to be installed in the downstream of the EPU5.6 to compensate for the multipole field error. This multipole magnet can provide the normal and skew components of the dipole, quadrupole, sextupole, octople, and dodecapole field components. Changeable multipole field components mechanism has been designed by using a special electric circuit. In addition, the measurement systems of Hall probe and stretch wire are used to measure the field quality of the multipole corrector magnet. This report will discuss the magnet circuit design, mechanical design, the switching mechanism of the multipole field components, and the field measurement results.