A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Huening, M.

Paper Title Page
MOPC019 Velocity Bunching at FLASH 112
 
  • T. Limberg, B. Beutner, W. Decking, M. Huening, M. Krasilnikov, M. Vogt
    DESY, Hamburg
  • O. Grimm
    Uni HH, Hamburg
 
  The vacuum-ultra-violet free electron laser in Hamburg (FLASH) is a linac driven SASE-FEL. High peak currents are, in routine operation, produced using magnetic bunch compression chicanes. Longitudinal dispersion in these chicanes allow bunch length changes of relativistic electron beams. For low energy electron beams (~5 MeV), the velocity dependence on electron energy can be utilized for bunch compression. Since strong bunch compression at low beam energies gives rise to strong space charge interactions which has an impact on, for instance, beam emittance and is therefore not suitable for full compression to the kA peak currents needed for SASE operation. Moderate velocity bunching, however, might be used to optimize the total bunch compression system of FLASH or the European XFEL. Experiments on the velocity bunching process at FLASH are presented here. Results on bunch length and transverse emittance measurements are discussed and compared with numerical tracking calculations.