A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hoffmann, D.

Paper Title Page
WEPP073 Simulation Studies of Impact of SPS Beam with Collimator Materials 2689
 
  • N. A. Tahir
    GSI, Darmstadt
  • R. W. Assmann, M. Brugger, R. Schmidt
    CERN, Geneva
  • V. E. Fortov, I. Lomonosov, A. Shutov
    IPCP, Chernogolovka, Moscow region
  • D. Hoffmann
    TU Darmstadt, Darmstadt
  • R. Piriz
    Universidad de Castilla-La Mancha, Ciudad Real
 
  Over the past years detailed simulations were carried out to study the impact of the full LHC 7 TeV beam on a target to assess the damage caused to the equipment as a result of an accident, especially to collimators and beam absorbers, and to estimate the thickness of a sacrificial absorber that would be required to stop the beam. This study has shown that the target material will be strongly heated by the beam and transformed into plasma. It has been estimated that the beam would tunnel up to 30 m in solid copper and to about 10 m in solid carbon*. Another interesting outcome of this study was that the LHC beam could be used as a tool to study High-Energy-Density (HED) states in matter. Using the same tools, we recently studied the impact of the SPS 450 GeV proton beam on tungsten and copper targets**. It has been found that the material will be seriously damaged and some tunneling of the beam into the target is expected. It should be possible to validate the predictions with a test facility to deflect the high energy high intensity SPS beam on collimator and absorber materials that will become operational in the next years.

*N. A. Tahir et al. J. Appl. Phys. 97 (2005) 083532.
*N. A. Tahir et al. Laser Part. Beams 25 (2007) 639.