A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hoehl, A.

Paper Title Page
WEPC032 Absolute Measurement of the MLS Storage Ring Parameters 2055
 
  • R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm
    PTB, Berlin
  • M. Abo-Bakr, K. B. Buerkmann-Gehrlein, J. Feikes, M. V. Hartrott, K. Holldack, J. Rahn, G. Wuestefeld
    BESSY GmbH, Berlin
 
  The Metrology Light Source (MLS), the new electron storage ring of the Physikalisch-Technische Bundesanstalt (PTB) located next to BESSY II in Berlin - Adlershof is dedicated to metrology and technology development in the UV and EUV spectral range as well as in the IR and THz region. The MLS can be operated at various electron beam energies up to approx. 600 MeV and at electron beam currents varying from 1 pA (one stored electron) up to 200 mA and is optimized for the generation of coherent synchrotron radiation. Of special interest for PTB is the operation of the MLS as a primary radiation source standard from the visible up to the X-ray region. Therefore the MLS is equipped with all the instrumentation necessary to measure the storage ring parameters needed for the calculation of the spectral photon flux according to the Schwinger theory with low uncertainty. The instrumentation and measurement results for the determination of the storage ring parameters are presented.  
WEPC033 Coherent Synchrotron Radiation at the Metrology Light Source of the PTB 2058
 
  • R. Müller, A. Hoehl, R. Klein, G. Ulm
    PTB, Berlin
  • M. Abo-Bakr, K. B. Buerkmann-Gehrlein, J. Feikes, M. V. Hartrott, J. S. Lee, J. Rahn, U. Schade, G. Wuestefeld
    BESSY GmbH, Berlin
 
  The Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, has set up a low-energy electron storage ring in Berlin-Adlershof in close cooperation with the BESSY GmbH. The new storage ring, named Metrology Light Source (MLS), is mainly dedicated to metrology and technological developments in the EUV, VUV, and IR spectral range. Additionally, the MLS is the first machine designed and prepared for a special machine optics mode (low-alpha operation mode) based on an octupole correction scheme, for the production of coherent synchrotron radiation in the FIR and THz region. Two beamlines dedicated to the use of IR synchrotron radiation are now under commissioning: an IR bending magnet beamline optimized for the MIR to FIR and an IR edge radiation beamline. We report the status of the MLS operated in the low alpha mode and present first results from the commissioning.