A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hoa, C.

Paper Title Page
WEPP031 Energy Deposited in the High Luminosity Inner Triplets of the LHC by Collision Debris 2587
 
  • E. Y. Wildner, F. Cerutti, A. Ferrari, C. Hoa, J.-P. Koutchouk
    CERN, Geneva
  • F. Broggi
    INFN/LASA, Segrate (MI)
  • N. V. Mokhov
    Fermilab, Batavia, Illinois
 
  The 14 TeV center of mass proton-proton collisions in the LHC produce not only interesting events for physics but also debris ending up in the accelerator equipment, in particular in the superconducting magnet coils. Evaluations of the deposited heat, that has to be transferred to the cryogenic system, have been made to guarantee that the energy deposition in the superconducting magnets does not exceed limits for magnet quenching and the capacity of the cryogenic system. The models of the LHC baseline are detailed and include description of, for energy deposition, essential elements like beam-pipes and corrector magnets. The evaluations made using the Monte-Carlo code FLUKA are compared to previous studies using MARS. For the comparison and consolidation of the calculations, a dedicated study of a simplified model has been made, showing satisfactory agreement.