A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Haynes, W.

Paper Title Page
MOPP121 Full Real-time Temperature Mapping System for 9-cell ILC-type Cavities 841
 
  • A. Canabal, F. L. Krawczyk, R. J. Roybal, J. D. Sedillo, T. Tajima
    LANL, Los Alamos, New Mexico
  • S. Cohen
    Bira, Albuquerque, New Mexico
  • W. Haynes
    Fermilab, Batavia, Illinois
 
  The mapping of outer-wall temperatures during the vertical test of a superconducting radio-frequency (SRF) cavity has been one of the most successful tools in detecting the cavities’ critical hot spots. However, due to the excessive number of sensors needed, no fixed-type temperature mapping (T-mapping) system that covers all cells has been built for 9-cell cavities. With the consensus that T-mapping analysis is needed in order to improve the yield of high-gradient cavities, a system with a reduced data acquisition time and increased temperature sensitivity, compared to rotating-arm systems, has been developed at Los Alamos National Laboratory. The system consists of ~5,000 100 Ω 1/8W Allen-Bradley resistors placed azimuthally every 10 degrees, a similar number of other resistors and diodes that implement the switching scheme, and data acquisition codes written in Labview. The details of the system and first results are presented and discussed.