A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hancock, S.

Paper Title Page
TUPP050 Electron Cloud Mitigation by Fast Bunch Compression in the CERN PS 1658
 
  • H. Damerau, S. Hancock, T. Kroyer, E. Mahner, M. Schokker
    CERN, Geneva
 
  A fast transverse instability has been observed with nominal LHC beams in the CERN Proton Synchrotron (PS) in 2006. The instability develops within less than 1 ms, starting when the bunch length decreases below a threshold of 11.5 ns during the RF procedure to shorten the bunches immediately prior to extraction. An alternative longitudinal beam manipulation, double bunch rotation, has been proposed to compress the bunches from 14 ns to the 4 ns required at extraction within 0.9 ms, saving some 4.5 ms with respect to the present compression scheme. The resultant bunch length is found to be equivalent for both schemes. In addition, electron cloud and vacuum measurements confirm that the development of an electron cloud and the onset of an associated fast pressure rise are delayed with the new compression scheme. Beam dynamics simulations and measurements of the double bunch rotation are presented as well as evidence for its beneficial effect from the electron cloud standpoint.  
MOPC131 Ions for LHC: Towards Completion of the Injector Chain 376
 
  • D. Manglunki, M. Albert, M.-E. Angoletta, G. Arduini, P. Baudrenghien, G. Bellodi, P. Belochitskii, E. Benedetto, T. Bohl, C. Carli, E. Carlier, M. Chanel, H. Damerau, S. S. Gilardoni, S. Hancock, D. Jacquet, J. M. Jowett, V. Kain, D. Kuchler, M. Martini, S. Maury, E. Métral, L. Normann, G. Papotti, S. Pasinelli, M. Schokker, R. Scrivens, G. Tranquille, J. L. Vallet, B. Vandorpe, U. Wehrle, J. Wenninger
    CERN, Geneva
 
  The CERN LHC experimental programme includes heavy ion physics with collisions between two counter-rotating Pb82+ ion beams at a momentum of 2.76 TeV/c/nucleon per beam and luminosities as high as 1·1027 cm-2 s-1. To achieve the beam parameters required for this operation the ion accelerator chain has undergone substantial modifications. Commissioning with beam of the various elements of this chain started in 2005 and in 2007 it was the turn of the final stage, the Super-Proton-Synchrotron (SPS) following extensive changes to the low-level RF hardware. The major limitations of this mode of operation of the SPS (space charge, intra-beam scattering) are presented, together with the performance reached so far. The status of the pre-injector performance will also be reviewed together with a description of the steps required to reach nominal performance.