A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hanaki, H.

Paper Title Page
MOPC010 Injector System for X-ray FEL at SPring-8 85
 
  • H. Hanaki, T. Asaka, H. Ego, H. Kimura, T. Kobayashi, S. Suzuki
    JASRI/SPring-8, Hyogo-ken
  • T. Hara, A. Higashiya, T. Inagaki, N. Kumagai, H. Maesaka, Y. Otake, T. Shintake, H. Tanaka, K. Togawa
    RIKEN/SPring-8, Hyogo
 
  The SPring-8 X-FEL based on the SASE process has been developed to generate X-rays of 0.1 nm by the combination of an 8 GeV high gradient linac (400 m) and a mini-gap undulator of in-vacuum type (90 m). The design goals of the slice beam emittance and peak current at the end of the linac are 1 π mm mrad and 3 kA, respectively. The injector of the linac generates an electron beam of 1 nC, accelerates it up to 30 MeV, and compresses its bunch length down to 20 ps step by step. The injector has been designed on the basis of the SCSS test accelerator. We adopted the following keys to toward the goals:
  1. A 500 kV thermionic gun (CeB6) without a control grid ejecting a beam holding the low rms emittance of 1.1 π mm mrad,
  2. a beam deflector downstream gating the beam to form a bunch of a 1 ns length,
  3. multi-stage RF structures (238, 476 and 1428 MHz) bunching and accelerating the beam gradually to maintain the initial emittance, and
  4. extra RF cavities of 1428 and 5712 MHz linearizing the energy chirp of the beam bunch to achieve the bunch compression resulting the required peak current.
 
MOPC061 Progress in R&D Efforts on the Energy Recovery Linac in Japan 205
 
  • S. Sakanaka, T. A. Agoh, A. Enomoto, S. Fukuda, K. Furukawa, T. Furuya, K. Haga, K. Harada, S. Hiramatsu, T. Honda, Y. Honda, K. Hosoyama, M. Izawa, E. Kako, T. Kasuga, H. Kawata, M. Kikuchi, H. Kobayakawa, Y. Kobayashi, T. Matsumoto, S. Michizono, T. Mitsuhashi, T. Miura, T. Miyajima, T. Muto, S. Nagahashi, T. Naito, T. Nogami, S. Noguchi, T. Obina, S. Ohsawa, T. Ozaki, H. Sasaki, S. Sasaki, K. Satoh, M. Satoh, M. Shimada, T. Shioya, T. Shishido, T. Suwada, T. Takahashi, Y. Tanimoto, M. Tawada, M. Tobiyama, K. Tsuchiya, T. Uchiyama, K. Umemori, S. Yamamoto
    KEK, Ibaraki
  • R. Hajima, H. Iijima, N. Kikuzawa, E. J. Minehara, R. Nagai, N. Nishimori, M. Sawamura
    JAEA/ERL, Ibaraki
  • H. Hanaki
    JASRI/SPring-8, Hyogo-ken
  • A. Ishii, I. Ito, T. Kawasaki, H. Kudo, N. Nakamura, H. Sakai, S. Shibuya, K. Shinoe, T. Shiraga, H. Takaki
    ISSP/SRL, Chiba
  • M. Katoh
    UVSOR, Okazaki
  • Y. Kobayashi, K. Torizuka, D. Yoshitomi
    AIST, Tsukuba
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
 
  The future synchrotron light sources, based on the energy recovery linacs (ERL), are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. The ERL-based light sources are under development at such institutes as the Cornell University, the Daresbury Laboratory, the Advanced Photon Source, and KEK/JAEA. The Japanese collaboration team, including KEK, JAEA, ISSP, and UVSOR, is working to realize the key technologies for the ERLs. Our R&D program includes the developments of ultra-low-emittance photocathode DC guns and of superconducting cavities, as well as proofs of accelerator-physics issues at a small test ERL (the Compact ERL). A 250-kV, 50-mA photo-cathode DC gun is under construction at JAEA. Two single-cell niobium cavities have been tested under high electric fields at KEK. The conceptual design of the Compact ERL has been carried out. We report recent progress in our R&D efforts.  
TUPC001 Optics Calculation and Emittance Measurement toward Automatic Beam Tuning of Linac 1035
 
  • T. Asaka, H. Dewa, H. Hanaki, T. Kobayashi, A. Mizuno, S. Suzuki, T. Taniuchi, H. Tomizawa, K. Yanagida
    JASRI/SPring-8, Hyogo-ken
  • T. Watanabe
    SES, Hyogo-pref.
 
  The SPring-8 1-GeV linac has a total of 13 sets of 80MW klystron units. In usual operation, two klystron units are driven as the standby unit. If there's any problem with an arbitrary klystron unit, the beam operation is able to restart immediately by using the standby unit. In that case, the optimization of beam optics has carried out using beam screen monitors. This beam tuning spend about one hour. In order to reduce the beam tuning time, we are promoting the development of the automatic beam optics tuning system. Since the complete understanding of the beam envelope is important, the particles tracking simulation of the linac was carried out by using PARMELA and SAD. Five sets of beam size monitors were installed in the end of the linac for measurement of the real beam envelope. In a beam study applying the simulation results, the beam waist was actually formed at the 10-m long drift space after the 1-GeV chicane section as predicted by SAD. The values of the measured beam emittance were smaller than the simulation results.