A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Grudiev, A.

Paper Title Page
MOPC087 The MERIT (nTOF-11) High Intensity Liquid Mercury Target Experiment at the CERN PS 262
 
  • I. Efthymiopoulos, A. Fabich, A. Grudiev, F. Haug, J. Lettry, M. Palm, H. Pernegger, R. R. Steerenberg
    CERN, Geneva
  • J. R.J. Bennett
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • O. Caretta, P. Loveridge
    STFC/RAL, Chilton, Didcot, Oxon
  • A. J. Carroll, V. B. Graves, P. T. Spampinato
    ORNL, Oak Ridge, Tennessee
  • H. G. Kirk, H. Park, T. Tsang
    BNL, Upton, Long Island, New York
  • K. T. McDonald
    PU, Princeton, New Jersey
  • N. V. Mokhov, S. I. Striganov
    Fermilab, Batavia, Illinois
 
  The MERIT (nTOF-11) experiment is a proof-of-principle test of a target system for high power proton beams to be used as a front-end for a neutrino factory complex or a muon collider. The experiment took data in autumn 2007 using the fast extracted beam from the CERN Proton Synchrotron (PS) with a maximum intensity of about 30TP per pulse. The target system, based on a free mercury jet, is capable of intercepting a 4-MW proton beam inside a 15-T magnetic field Such a field is required to capture the low-energy secondary pions which will provide the source of the required intense muon beams. Particle detectors have been installed around the target setup in order to measure the secondary particle flux out of the target and probe cavitation effects in the mercury jet when hit with variable intensity beams. The data analysis is ongoing: the results presented at this conference will demonstrate the validity of the liquid mercury target concept.

For the MERIT collaboration.

 
WEPP084 Fabrication of a Quadrant-type Accelerator Structure for CLIC 2716
 
  • T. Higo, Y. Higashi, H. Kawamata, T. T. Takatomi, K. Ueno, Y. Watanabe, K. Yokoyama
    KEK, Ibaraki
  • A. Grudiev, G. Riddone, M. Taborelli, W. Wuensch, R. Zennaro
    CERN, Geneva
 
  In order to heavily damp the higher order modes of an accelerator structure for CLIC, two kind of damping mechanisms are implemented in one of the designs. Here each cell is equipped with electrically coupled damping channels in addition to the magnetically coupled waveguides. This design requires an assembly of longitudinally cut four quadrants to form a structure and the parts are necessarily made with milling. Since KEK has developed a high-precision machining of X-band accelerator cells with milling and turning at the same time, the experience was extended to the milling of this quadrant. Firstly, the fabrication test of a short quadrant was performed with multiple vendors to taste the present-day engineering level of milling. Following this, a full-size quadrant is also made. In this course, some of the key features are addressed, such as flatness of the reference mating surfaces, alignment grooves, 3D profile shape of the cells, surface roughness and edge treatment. In this paper, these issues are discussed from both fabrication and evaluation point of views.