A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Goulden, A. R.

Paper Title Page
MOPP141 Commissioning of the ERLP SRF Systems at Daresbury Laboratory 889
 
  • P. A. McIntosh, R. Bate, R. K. Buckley, S. R. Buckley, P. A. Corlett, A. J. Moss, J. F. Orrett, S. M. Pattalwar, A. E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • F. G. Gabriel
    FZD, Dresden
  • A. R. Goulden
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
  • P. vom Stein
    ACCEL, Bergisch Gladbach
 
  The Energy Recovery Linac Prototype (ERLP) has been installed at Daresbury Laboratory and its baseline commissioning completed. The SRF systems for ERLP comprise two 9-cell, 1.3 GHz accelerating cavities in the injector (or Booster) cryomodule, which provide a nominal energy gain of 8 MeV for the injected 350 keV beam from the photo-injector. The beam is then accelerated in an identical two cavity cryomodule in the energy recovery main Linac, giving a final ERLP energy of 35 MeV. Each SRF accelerating cavity is powered by commercially available Inductive Output Tubes (IOTs) and the analog LLRF control system is identical to that employed on the ELBE facility at FZD Rossendorf. This paper details the commissioning experience gained for these systems and highlights the ultimate performance achieved.  
TUOAM02 The Status of the Daresbury Energy Recovery Linac Prototype 1001
 
  • D. J. Holder, P. A. McIntosh, S. L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N. Bliss
    STFC/DL, Daresbury, Warrington, Cheshire
  • A. R. Goulden
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
 
  This paper provides an update on the progress with the building and commissioning of the Energy Recovery Linac Prototype (ERLP). The past year has seen a number of notable achievements as well as a number of obstacles to overcome. The detailed results from the gun commissioning work are described elsewhere at this conference. ERLP is a 35 MeV technology demonstrator being built as part of the UK's R&D programme to develop its next-generation light source (NLS). It is based on a combination of a DC photocathode electron gun, a superconducting injector linac and a main linac operating in energy recovery mode. These drive an IR-FEL, an inverse Compton Back-Scattering (CBS) x-ray source and a terahertz beamline. The priorities for ERLP are to gain experience of operating a photoinjector gun and superconducting linacs; to produce and maintain high-brightness electron beams; to achieve energy recovery from an FEL-disrupted beam; the development of an electro-optic longitudinal profile monitor and to study challenging synchronisation issues. ERLP will also act as an injector for what will be the world's first non-scaling, Fixed-Field Alternating Gradient (FFAG) accelerator called EMMA.  
slides icon Slides