A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Giove, D.

Paper Title Page
TUPP132 Design, Construction and Low Power RF Tests of the First Module of the ACLIP Linac 1836
 
  • V. G. Vaccaro
    Naples University Federico II, Mathematical, Physical and Natural Sciences Faculty, Napoli
  • C. De Martinis
    Universita' degli Studi di Milano & INFN, Segrate
  • D. Giove
    INFN/LASA, Segrate (MI)
  • M. R. Masullo
    INFN-Napoli, Napoli
  • S. J. Mathot
    CERN, Geneva
  • A. C. Rainò, V. Variale
    INFN-Bari, Bari
  • R. J. Rush
    e2v, Chelmsford, Essex
 
  ACLIP is a 3 GHz proton SCL linac designed as a booster for a 30 MeV commercial cyclotron. The final energy is 62 MeV well suitable for the therapy of ocular tumours or for further acceleration (up to 230 MeV) by a second linac in order to treat deep seated tumours. The possibility of using magnetrons as the source of RF power, to reduce the overall cost of the machine, is under investigation within a collaboration with the company e2v (Chelmsford, UK). ACLIP is a 5 modules structure coupled together. The first one (able to accelerate proton from 30 to 35 MeV) has been machined and completely the brazed. We plan to have the high power test by early fall 2008. In this paper we will review the main features of the linac and discuss the results of the RF measurements carried out on this prototype.  
WEPC075 Recent Results and Future Perspectives of the SPARC Project 2169
 
  • M. Ferrario, D. Alesini, M. Bellaveglia, R. Boni, M. Boscolo, M. Castellano, E. Chiadroni, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, B. Marchetti, A. Marinelli, C. Marrelli, E. Pace, L. Palumbo, L. Pellegrino, R. Ricci, U. Rotundo, C. Sanelli, F. Sgamma, B. Spataro, F. Tazzioli, S. Tomassini, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Bacci, I. Boscolo, F. Broggi, F. Castelli, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, V. Petrillo, A. R. Rossi, L. Serafini
    INFN-Milano, Milano
  • M. Bougeard, B. Carré, D. Garzella, M. Labat, G. Lambert, H. Merdji, P. Salieres, O. Tchebakoff
    CEA, Gif-sur-Yvette
  • L. Catani
    INFN-Roma II, Roma
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma
  • F. Ciocci, G. Dattoli, A. Dipace, A. Doria, G. P. Gallerano, L. Giannessi, E. Giovenale, G. L. Orlandi, S. Pagnutti, A. Petralia, M. Quattromini, C. Ronsivalle, E. Sabia, I. P. Spassovsky, V. Surrenti
    ENEA C. R. Frascati, Frascati (Roma)
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette
  • M. Mattioli, M. Serluca
    INFN-Roma, Roma
  • M. Migliorati, A. Mostacci
    Rome University La Sapienza, Roma
  • M. Petrarca
    Università di Roma I La Sapienza, Roma
  • J. B. Rosenzweig
    UCLA, Los Angeles, California
 
  The SPARC project foresees the realization of a high brightness photo-injector to produce a 150-200 MeV electron beam to drive 500 nm FEL experiments in various configurations, a Thomson backscattering source and a plasma accelerator experiment. The SPARC photoinjector is also the test facility for the recently approved VUV FEL project named SPARX. As a first stage of the commissioning a complete characterization of the photoinjector has been accomplished with a detailed study of the emittance compensation process downstream the gun-solenoid system and the demonstration of the emittance oscillation in the drift. The second stage of the commissioning, that is currently underway, foresees a detailed analysis of the beam matching with the linac in order to confirm the theoretically prediction of emittance compensation based on the “invariant envelope” matching and the demonstration of the “velocity bunching” technique in the linac. In this paper we report the experimental results obtained so far and the scientific program for the near future.