A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Galatà, A.

Paper Title Page
MOPC139 Refractory Ovens for ECR Ion Sources and Their Scaling 397
 
  • M. Cavenago, A. Galatà, M. Sattin
    INFN/LNL, Legnaro, Padova
  • T. Kulevoy, S. Petrenko
    ITEP, Moscow
 
  The radiofrequency (rf) oven can be used as a metal vapour injector for Electron Cyclotron Resonance ion source; the application to high temperature boiling metals (like Cr, Ti and V) was recently demonstrated. Duration and reusability of oven parts were excellent, since crucible only need to be maintained at a temperature Ts larger than other parts; for vanadium case, achieved Ts was up to 2300 K with about 280 W of rf power, with the present design and size, tailored to our 14.4 GHz ECRIS. Optimization for different sources is discussed, and modern design tools are reviewed. Materials, more than rf power coupling, emerge as ultimate limits. Comparisons of results with resistive oven and sputter probes and with different metals are briefly reported.  
MOPC145 Commissioning of the ECR Ion Sources at CNAO Facility 415
 
  • G. Ciavola, L. Celona, S. Gammino, F. Maimone
    INFN/LNS, Catania
  • C. Bieth, W. Bougy, G. Gaubert, O. Tasset, A. C.C. Villari
    PANTECHNIK, BAYEUX
  • A. Galatà
    INFN/LNL, Legnaro, Padova
  • R. Monferrato, M. Pullia
    CNAO Foundation, Milan
 
  The Centro Nazionale di Adroterapia Oncologica (National Center for Oncological Hadrontherapy, CNAO) is the Italian center for deep hadrontherapy. It will deliver treatments with active scanning both with proton and carbon ion beams. At CNAO two ECR sources of the Supernanogan type (built by the Pantechnik company according to specifications set by INFN) are installed and run continuously and in parallel, to allow the fast change of the particle species. The two sources are identical and can provide both particle species after a simple switch from one gas to the other, which allows as well to run the facility, in emergency, with only one source. Each source is equipped with a dedicated beam line including a spectrometer and beam diagnostics. Optimisation of beam emittance and intensity is of primary importance to obtain the necessary current at the RFQ-LINAC and then at injection. The preliminary tests have shown the complete fulfillment of the specifications in terms of beam current and emittance and the final tests are ongoing. A description of the source design and performance will be presented.